minuscule 发表于 2025-3-21 18:07:50
书目名称An Introduction to the Kähler-Ricci Flow影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0155558<br><br> <br><br>书目名称An Introduction to the Kähler-Ricci Flow影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0155558<br><br> <br><br>书目名称An Introduction to the Kähler-Ricci Flow网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0155558<br><br> <br><br>书目名称An Introduction to the Kähler-Ricci Flow网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0155558<br><br> <br><br>书目名称An Introduction to the Kähler-Ricci Flow被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0155558<br><br> <br><br>书目名称An Introduction to the Kähler-Ricci Flow被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0155558<br><br> <br><br>书目名称An Introduction to the Kähler-Ricci Flow年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0155558<br><br> <br><br>书目名称An Introduction to the Kähler-Ricci Flow年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0155558<br><br> <br><br>书目名称An Introduction to the Kähler-Ricci Flow读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0155558<br><br> <br><br>书目名称An Introduction to the Kähler-Ricci Flow读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0155558<br><br> <br><br>长矛 发表于 2025-3-21 20:42:10
0075-8434Kähler-Ricci flow.The first book to present a complete proo.This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excel新手 发表于 2025-3-22 03:12:56
http://reply.papertrans.cn/16/1556/155558/155558_3.pngbeta-cells 发表于 2025-3-22 04:34:01
http://reply.papertrans.cn/16/1556/155558/155558_4.pnggraphy 发表于 2025-3-22 11:07:04
,Technologien für Digitalisierungslösungen,ference talks, including “Einstein Manifolds and Beyond” at CIRM (Marseille—Luminy, fall 2007), “Program on Extremal Kähler Metrics and Kähler–Ricci Flow” at the De Giorgi Center (Pisa, spring 2008), and “Analytic Aspects of Algebraic and Complex Geometry” at CIRM (Marseille— Luminy, spring 2011).鸵鸟 发表于 2025-3-22 15:34:11
,The Kähler–Ricci Flow on Fano Manifolds,ference talks, including “Einstein Manifolds and Beyond” at CIRM (Marseille—Luminy, fall 2007), “Program on Extremal Kähler Metrics and Kähler–Ricci Flow” at the De Giorgi Center (Pisa, spring 2008), and “Analytic Aspects of Algebraic and Complex Geometry” at CIRM (Marseille— Luminy, spring 2011).PALSY 发表于 2025-3-22 18:06:05
http://reply.papertrans.cn/16/1556/155558/155558_7.pngARIA 发表于 2025-3-22 23:26:05
,An Introduction to the Kähler–Ricci Flow,or the flow, convergence on manifolds with negative and zero first Chern class, and behavior of the flow in the case when the canonical bundle is big and nef. We also discuss the collapsing of the Kähler–Ricci flow on the product of a torus and a Riemann surface of genus greater than one. Finally, w蚊帐 发表于 2025-3-23 01:59:43
,Regularizing Properties of the Kähler–Ricci Flow,zing the work of Song and Tian on this topic. This result is applied to construct a Kähler–Ricci flow on varieties with log terminal singularities, in connection with the Minimal Model Program. The same circle of ideas is also used to prove a regularity result for elliptic complex Monge–Ampère equat斜谷 发表于 2025-3-23 08:10:25
http://reply.papertrans.cn/16/1556/155558/155558_10.png