ARSON 发表于 2025-3-21 20:03:03

书目名称An Introduction to Riemannian Geometry影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0155464<br><br>        <br><br>书目名称An Introduction to Riemannian Geometry影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0155464<br><br>        <br><br>书目名称An Introduction to Riemannian Geometry网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0155464<br><br>        <br><br>书目名称An Introduction to Riemannian Geometry网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0155464<br><br>        <br><br>书目名称An Introduction to Riemannian Geometry被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0155464<br><br>        <br><br>书目名称An Introduction to Riemannian Geometry被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0155464<br><br>        <br><br>书目名称An Introduction to Riemannian Geometry年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0155464<br><br>        <br><br>书目名称An Introduction to Riemannian Geometry年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0155464<br><br>        <br><br>书目名称An Introduction to Riemannian Geometry读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0155464<br><br>        <br><br>书目名称An Introduction to Riemannian Geometry读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0155464<br><br>        <br><br>

褪色 发表于 2025-3-21 23:13:45

http://reply.papertrans.cn/16/1555/155464/155464_2.png

SHRIK 发表于 2025-3-22 02:59:23

http://reply.papertrans.cn/16/1555/155464/155464_3.png

难听的声音 发表于 2025-3-22 04:40:15

http://reply.papertrans.cn/16/1555/155464/155464_4.png

假设 发表于 2025-3-22 11:10:40

http://reply.papertrans.cn/16/1555/155464/155464_5.png

LATER 发表于 2025-3-22 15:48:26

http://reply.papertrans.cn/16/1555/155464/155464_6.png

sphincter 发表于 2025-3-22 17:09:55

http://reply.papertrans.cn/16/1555/155464/155464_7.png

躲债 发表于 2025-3-22 21:24:51

http://reply.papertrans.cn/16/1555/155464/155464_8.png

斗争 发表于 2025-3-23 02:30:51

Curvature,nt vector fields, the difference between the sum of the internal angles of a geodesic triangle and ., or the angle by which a vector is rotated when parallel-transported along a closed curve. This chapter addresses the various characterizations and properties of curvature.

反叛者 发表于 2025-3-23 05:40:10

Geometric Mechanics,iggered by the need to explain a mismatch between the observed orbit of planet Uranus and its theoretical prediction. This chapter uses Riemannian geometry to give a geometric formulation of Newtonian mechanics.
页: [1] 2 3 4
查看完整版本: Titlebook: An Introduction to Riemannian Geometry; With Applications to Leonor Godinho,José Natário Textbook 2014 Springer International Publishing Sw