ARSON 发表于 2025-3-21 20:03:03
书目名称An Introduction to Riemannian Geometry影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0155464<br><br> <br><br>书目名称An Introduction to Riemannian Geometry影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0155464<br><br> <br><br>书目名称An Introduction to Riemannian Geometry网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0155464<br><br> <br><br>书目名称An Introduction to Riemannian Geometry网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0155464<br><br> <br><br>书目名称An Introduction to Riemannian Geometry被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0155464<br><br> <br><br>书目名称An Introduction to Riemannian Geometry被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0155464<br><br> <br><br>书目名称An Introduction to Riemannian Geometry年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0155464<br><br> <br><br>书目名称An Introduction to Riemannian Geometry年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0155464<br><br> <br><br>书目名称An Introduction to Riemannian Geometry读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0155464<br><br> <br><br>书目名称An Introduction to Riemannian Geometry读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0155464<br><br> <br><br>褪色 发表于 2025-3-21 23:13:45
http://reply.papertrans.cn/16/1555/155464/155464_2.pngSHRIK 发表于 2025-3-22 02:59:23
http://reply.papertrans.cn/16/1555/155464/155464_3.png难听的声音 发表于 2025-3-22 04:40:15
http://reply.papertrans.cn/16/1555/155464/155464_4.png假设 发表于 2025-3-22 11:10:40
http://reply.papertrans.cn/16/1555/155464/155464_5.pngLATER 发表于 2025-3-22 15:48:26
http://reply.papertrans.cn/16/1555/155464/155464_6.pngsphincter 发表于 2025-3-22 17:09:55
http://reply.papertrans.cn/16/1555/155464/155464_7.png躲债 发表于 2025-3-22 21:24:51
http://reply.papertrans.cn/16/1555/155464/155464_8.png斗争 发表于 2025-3-23 02:30:51
Curvature,nt vector fields, the difference between the sum of the internal angles of a geodesic triangle and ., or the angle by which a vector is rotated when parallel-transported along a closed curve. This chapter addresses the various characterizations and properties of curvature.反叛者 发表于 2025-3-23 05:40:10
Geometric Mechanics,iggered by the need to explain a mismatch between the observed orbit of planet Uranus and its theoretical prediction. This chapter uses Riemannian geometry to give a geometric formulation of Newtonian mechanics.