找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Visual Data Mining; Theory, Techniques a Simeon J. Simoff,Michael H. Böhlen,Arturas Mazeika Book 2008 Springer-Verlag Berlin Heidelberg 200

[复制链接]
楼主: Intermediary
发表于 2025-3-25 07:09:47 | 显示全部楼层
Visual Methods for Examining SVM Classifiersighly accurate results in complex classification problems, for example, gene expression analysis. The SVM algorithm is also quite intuitive with a few inputs to vary in the fitting process and several outputs that are interesting to study. For many data mining tasks (e.g., cancer prediction) finding
发表于 2025-3-25 07:49:21 | 显示全部楼层
发表于 2025-3-25 11:53:25 | 显示全部楼层
发表于 2025-3-25 16:24:58 | 显示全部楼层
Mining Patterns for Visual Interpretation in a Multiple-Views Environmentent an innovative framework named Visualization Tree in order to integrate multiple data visualizations assisted by novel visual exploration techniques. These exploration techniques are named Frequency Plot, Relevance Plot and Representative Plot, and are integrated according the proposed Visualizat
发表于 2025-3-25 20:31:13 | 显示全部楼层
发表于 2025-3-26 03:03:04 | 显示全部楼层
发表于 2025-3-26 07:57:55 | 显示全部楼层
Context Visualization for Visual Data Mininghe preservation of context and history information in the visualization can improve user comprehension of the exploration process as well as enhance the reusability of mining techniques and parameters to archive the desired results. This chapter presents methodology and various interactive visualiza
发表于 2025-3-26 08:57:34 | 显示全部楼层
发表于 2025-3-26 14:40:14 | 显示全部楼层
Immersive Visual Data Mining: The 3DVDM Approache use a specific data set to illustrate how the visualization tools of the 3D Visual Data Mining (3DVDM) system can assist in detecting potentially interesting non-linear data relationships that are hard to discover using traditional statistical methods of analysis. These detected data structures ca
发表于 2025-3-26 17:18:56 | 显示全部楼层
DataJewel: Integrating Visualization with Temporal Data Mining component and a database component. We introduce a new visualization technique called CalendarView as an implementation of the visualization component, and we introduce a data structure that supports temporal mining of large databases. In our architecture, algorithms can be tightly integrated with
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 18:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表