找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Variable-Structure Approaches; Analysis, Simulation Andreas Rauh,Luise Senkel Book 2016 Springer International Publishing Switzerland 2016

[复制链接]
楼主: lumbar-puncture
发表于 2025-3-25 07:06:02 | 显示全部楼层
发表于 2025-3-25 08:20:21 | 显示全部楼层
Saif Siddique Butt,Hao Sun,Harald Aschemann speed can be validly achieved. It implies that this framework is a competent model for visual selective attention, which expands the way to implement a computational mechanism for top-down modulating the bottom-up process especially in the case of task-related attentional action in machine vision s
发表于 2025-3-25 14:59:33 | 显示全部楼层
Piotr Leśniewski,Andrzej Bartoszewiczizing procedure to increase the re-covered image information. With a training set of eighty images, the network is trained by means of mean square error (MSE). The proposed method utilizing peak signal to noise ratio (PSNR) and structural similarity (SSIM) index measures are used to assess the resto
发表于 2025-3-25 17:03:21 | 显示全部楼层
Andreas Rauh,Luise SenkelThis work mainly focusses on analyzing the performance of optical link with various prediction strategies (hard decision-FEC, soft decision-FEC and probabilistic shaping)) using forward error correcting codes (FEC). The symbol error rate, bit error rate and achievable information rates have been ana
发表于 2025-3-25 22:57:09 | 显示全部楼层
Luise Senkel,Andreas Rauh,Harald Aschemannrmance of Deep AR and GRU did not degrade when the amount of training data was reduced, suggesting that these models may not require a large amount of data to achieve consistent and reliable performance. The study demonstrates that incorporating deep learning approaches in a forecasting scenario sig
发表于 2025-3-26 03:19:03 | 显示全部楼层
发表于 2025-3-26 05:35:01 | 显示全部楼层
发表于 2025-3-26 11:22:32 | 显示全部楼层
发表于 2025-3-26 16:02:59 | 显示全部楼层
发表于 2025-3-26 19:23:34 | 显示全部楼层
Horst Schulte,Florian Pöschkementation results. Besides, we transform multi-class segmentation tasks into multiple binary sub-segmentation tasks. Experiments on the BraTS’2017 Challenge Dataset show that the proposed . framework is very suitable for organ tissue segmentation with nested anatomical structures. Here, our single-v
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 00:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表