找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Uncertainty Modeling for Engineering Applications; Flavio Canavero Book 2019 Springer Nature Switzerland AG 2019 Uncertainty Quantificatio

[复制链接]
楼主: Odious
发表于 2025-3-25 07:00:24 | 显示全部楼层
发表于 2025-3-25 08:47:56 | 显示全部楼层
Tom Van Steenkiste,Joachim van der Herten,Ivo Couckuyt,Tom Dhaenecs, such as dark field microscopy, Zernike phase contrast microscopy, differential interference contrast (DIC), and digital holographic microscopy and their applications to study the various type of specimens without dye or label.
发表于 2025-3-25 14:11:37 | 显示全部楼层
E. Chiaramello,S. Fiocchi,M. Parazzini,P. Ravazzani,J. Wiartotential, and harmonic forms on Sasakian and Vaisman manifolds.  Each chapter in Parts I and II begins with motivation and historic context for the topics explored and includes numerous exercises for further ex978-3-031-58122-9978-3-031-58120-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-25 16:04:39 | 显示全部楼层
2509-6796 es in their fields of application. The contents build upon the workshop “Uncertainty Modeling for Engineering Applications” (UMEMA 2017), held in Torino, Italy in November 2017..978-3-030-04870-9Series ISSN 2509-6796 Series E-ISSN 2509-7024
发表于 2025-3-25 23:43:23 | 显示全部楼层
发表于 2025-3-26 02:42:14 | 显示全部楼层
Quadrature Strategies for Constructing Polynomial Approximations,ing techniques covered include subsampling quadratures, Christoffel, induced and Monte Carlo methods. Optimization methods discussed range from linear programming ideas and Newton’s method to greedy procedures from numerical linear algebra. Our exposition is aided by examples that implement some of the aforementioned strategies.
发表于 2025-3-26 06:21:59 | 显示全部楼层
发表于 2025-3-26 12:18:23 | 显示全部楼层
Quadrature Strategies for Constructing Polynomial Approximations, tremendous research dedicated to this singular cause. In this paper, we begin by reviewing classical methods for finding suitable . points for polynomial approximation in both the univariate and multivariate setting. Then, we categorize recent advances into those that propose a new sampling approac
发表于 2025-3-26 14:32:15 | 显示全部楼层
Weighted Reduced Order Methods for Parametrized Partial Differential Equations with Random Inputs,tion coefficients, boundary conditions) are considered as parameters of the equations. We take advantage of the resulting parametrized formulation to propose an efficient reduced order model; we also profit by the underlying stochastic assumption in the definition of suitable weights to drive to red
发表于 2025-3-26 16:55:02 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-21 10:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表