找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: The Nature of Statistical Learning Theory; Vladimir N. Vapnik Book 2000Latest edition Springer Science+Business Media New York 2000 Condit

[复制链接]
查看: 48603|回复: 35
发表于 2025-3-21 19:52:28 | 显示全部楼层 |阅读模式
书目名称The Nature of Statistical Learning Theory
编辑Vladimir N. Vapnik
视频video
概述The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization..It considers learning as a general problem of function estimation based
丛书名称Information Science and Statistics
图书封面Titlebook: The Nature of Statistical Learning Theory;  Vladimir N. Vapnik Book 2000Latest edition Springer Science+Business Media New York 2000 Condit
描述The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: * the setting of learning problems based on the model of minimizing the risk functional from empirical data * a comprehensive analysis of the empirical risk minimization principle including necessary and sufficient conditions for its consistency * non-asymptotic bounds for the risk achieved using the empirical risk minimization principle * principles for controlling the generalization ability of learning machines using small sample sizes based on these bounds * the Support Vector methods that control the generalization ability when estimating function using small sample size. The second edition of the book contains three new chapters devoted to further development of the learning theory and SVM techniques. These include: * the theory of direct method of learning based on solving m
出版日期Book 2000Latest edition
关键词Conditional probability; Statistical Learning; Statistical Theory; cognition; control; learning; pattern r
版次2
doihttps://doi.org/10.1007/978-1-4757-3264-1
isbn_softcover978-1-4419-3160-3
isbn_ebook978-1-4757-3264-1Series ISSN 1613-9011 Series E-ISSN 2197-4128
issn_series 1613-9011
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

书目名称The Nature of Statistical Learning Theory影响因子(影响力)




书目名称The Nature of Statistical Learning Theory影响因子(影响力)学科排名




书目名称The Nature of Statistical Learning Theory网络公开度




书目名称The Nature of Statistical Learning Theory网络公开度学科排名




书目名称The Nature of Statistical Learning Theory被引频次




书目名称The Nature of Statistical Learning Theory被引频次学科排名




书目名称The Nature of Statistical Learning Theory年度引用




书目名称The Nature of Statistical Learning Theory年度引用学科排名




书目名称The Nature of Statistical Learning Theory读者反馈




书目名称The Nature of Statistical Learning Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:35:28 | 显示全部楼层
978-1-4419-3160-3Springer Science+Business Media New York 2000
发表于 2025-3-22 01:31:44 | 显示全部楼层
发表于 2025-3-22 05:16:37 | 显示全部楼层
Information Science and Statisticshttp://image.papertrans.cn/t/image/914610.jpg
发表于 2025-3-22 10:55:29 | 显示全部楼层
发表于 2025-3-22 14:11:12 | 显示全部楼层
发表于 2025-3-22 18:36:15 | 显示全部楼层
1613-9011 s learning as a general problem of function estimation basedThe aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and
发表于 2025-3-22 22:00:26 | 显示全部楼层
Book 2000Latest editions that control the generalization ability when estimating function using small sample size. The second edition of the book contains three new chapters devoted to further development of the learning theory and SVM techniques. These include: * the theory of direct method of learning based on solving m
发表于 2025-3-23 05:20:13 | 显示全部楼层
发表于 2025-3-23 05:41:14 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 21:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表