找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Statistical Regression Modeling with R; Longitudinal and Mul Ding-Geng (Din) Chen,Jenny K. Chen Textbook 2021 The Editor(s) (if applicable)

[复制链接]
查看: 45371|回复: 42
发表于 2025-3-21 16:04:37 | 显示全部楼层 |阅读模式
书目名称Statistical Regression Modeling with R
副标题Longitudinal and Mul
编辑Ding-Geng (Din) Chen,Jenny K. Chen
视频video
概述Compiles commonly used regression methods that are essential for graduate students, applied data science, and related.Offers a step-by-step implementation linear and multilevel regressions with normal
丛书名称Emerging Topics in Statistics and Biostatistics
图书封面Titlebook: Statistical Regression Modeling with R; Longitudinal and Mul Ding-Geng (Din) Chen,Jenny K. Chen Textbook 2021 The Editor(s) (if applicable)
描述This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers‘ learning experience, .Statistical Regression Modeling. promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages .nlme. and .lme4. for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields..
出版日期Textbook 2021
关键词linear regression; logistic regression; poisson regression; generalized linear model; nonlinear regressi
版次1
doihttps://doi.org/10.1007/978-3-030-67583-7
isbn_softcover978-3-030-67585-1
isbn_ebook978-3-030-67583-7Series ISSN 2524-7735 Series E-ISSN 2524-7743
issn_series 2524-7735
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Statistical Regression Modeling with R影响因子(影响力)




书目名称Statistical Regression Modeling with R影响因子(影响力)学科排名




书目名称Statistical Regression Modeling with R网络公开度




书目名称Statistical Regression Modeling with R网络公开度学科排名




书目名称Statistical Regression Modeling with R被引频次




书目名称Statistical Regression Modeling with R被引频次学科排名




书目名称Statistical Regression Modeling with R年度引用




书目名称Statistical Regression Modeling with R年度引用学科排名




书目名称Statistical Regression Modeling with R读者反馈




书目名称Statistical Regression Modeling with R读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:16:18 | 显示全部楼层
发表于 2025-3-22 02:37:18 | 显示全部楼层
Textbook 2021ally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transitio
发表于 2025-3-22 07:09:05 | 显示全部楼层
发表于 2025-3-22 09:45:14 | 显示全部楼层
Nonlinear Mixed-Effects Modeling,ro and Bates (Mixed-effect models in S and SPLUS. Springer, New York, 2000). In this chapter, we illustrate the application of the . package . by analyzing a commonly used dataset on the growth of loblolly pines.
发表于 2025-3-22 13:43:40 | 显示全部楼层
Nonlinear Regression Modeling,f time in weeks from a chlorine data using SAS/R/Stata/SPSS to illustrate the model fitting can be found in Chapter 10 of Wilson and Chen (Fundamental statistical analytics for health data: using R/SAS/STATA/SPSS, vol. 1. Springer, New York, 2021).
发表于 2025-3-22 19:55:57 | 显示全部楼层
Introduction to Multi-Level Modeling,and the associated assumptions that make a classical regression model valid. If data are clustered (i.e., in multi-level data), the independent assumption in classical linear regression is violated. In this situation, we need to have new regression modeling techniques. Therefore, this chapter is to
发表于 2025-3-22 23:37:26 | 显示全部楼层
发表于 2025-3-23 04:26:03 | 显示全部楼层
发表于 2025-3-23 08:57:31 | 显示全部楼层
Nonlinear Mixed-Effects Modeling,discussed in Chap. .. For a detailed theory of nonlinear MLM (i.e., nonlinear mixed-effects model), interested readers can refer to the book by Pinheiro and Bates (Mixed-effect models in S and SPLUS. Springer, New York, 2000). In this chapter, we illustrate the application of the . package . by anal
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 19:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表