找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges; Third International Oscar Camara,Tommaso Mans

[复制链接]
查看: 18746|回复: 61
发表于 2025-3-21 17:48:10 | 显示全部楼层 |阅读模式
书目名称Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges
副标题Third International
编辑Oscar Camara,Tommaso Mansi,Alistair Young
视频video
概述High quality selected papers.Unique visibility.State of the art research
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges; Third International  Oscar Camara,Tommaso Mans
描述This book constitutes the thoroughly refereed post-conference proceedings of the Third International Workshop on Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges, STACOM 2012, held in conjunction with MICCAI 2012, in Nice, France, in October 2012. .The 42 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on CFD challenge, DE-MRI segmentation challenge, LV landmark detection challenge, motion tracking analysis challenge, and regular papers.
出版日期Conference proceedings 2013
关键词3D computer modeling; cardiac imaging; fluid dynamics; motion estimation; small animal imaging
版次1
doihttps://doi.org/10.1007/978-3-642-36961-2
isbn_softcover978-3-642-36960-5
isbn_ebook978-3-642-36961-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

书目名称Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges影响因子(影响力)




书目名称Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges影响因子(影响力)学科排名




书目名称Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges网络公开度




书目名称Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges网络公开度学科排名




书目名称Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges被引频次




书目名称Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges被引频次学科排名




书目名称Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges年度引用




书目名称Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges年度引用学科排名




书目名称Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges读者反馈




书目名称Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:04:28 | 显示全部楼层
发表于 2025-3-22 04:26:27 | 显示全部楼层
Infarct Segmentation Challenge on Delayed Enhancement MRI of the Left Ventricleimage and included in this study. A ground truth consensus segmentation based on all human rater segmentations was obtained using an Expectation-Maximization (EM) method (the STAPLE method). Automated segmentations from five groups contributed to this challenge.
发表于 2025-3-22 05:02:18 | 显示全部楼层
Motion Estimation in 3D Echocardiography Using Smooth Field Registration unknown field with a Gaussian kernel. We apply our algorithm to datasets with reliable ground truth: a set of synthetic sequences with known trajectories and a set of sequences of a mechanical phantom implanted with microsonometry crystals.
发表于 2025-3-22 12:23:38 | 显示全部楼层
发表于 2025-3-22 13:09:32 | 显示全部楼层
A 1D Lumped-Parameter/3D CFD Approach for Pressure Drop in the Aortic Coarctationuid with density r = 0.001 gr/mm3 and a dynamic viscosity m = 0.004 gr/mm/sec in laminar flow. The boundary conditions of the 3D model (inlet and outlet conditions) have been calculated using a 1D model. Parallelization procedures will be used in order to increase the performance of the CFD calculations.
发表于 2025-3-22 18:51:43 | 显示全部楼层
发表于 2025-3-23 00:45:34 | 显示全部楼层
发表于 2025-3-23 01:42:26 | 显示全部楼层
发表于 2025-3-23 06:06:53 | 显示全部楼层
Discriminative Context Modeling Using Auxiliary Markers for LV Landmark Detection from a Single MR Icontext with more discriminative power. The presented approach is evaluated on the STACOM2012 database, containing 100 independent test cases. Automatic landmark detection targets include two mitral valve landmarks in a long axis image, two RV insert landmarks in a short-axis image, and one central axis point in an LV base image.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 17:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表