找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Statistical Analysis for High-Dimensional Data; The Abel Symposium 2 Arnoldo Frigessi,Peter Bühlmann,Marina Vannucci Conference proceedings

[复制链接]
查看: 9435|回复: 49
发表于 2025-3-21 19:42:48 | 显示全部楼层 |阅读模式
书目名称Statistical Analysis for High-Dimensional Data
副标题The Abel Symposium 2
编辑Arnoldo Frigessi,Peter Bühlmann,Marina Vannucci
视频videohttp://file.papertrans.cn/877/876323/876323.mp4
概述Broad spectrum of problems.Cutting edge research.Includes supplementary material:
丛书名称Abel Symposia
图书封面Titlebook: Statistical Analysis for High-Dimensional Data; The Abel Symposium 2 Arnoldo Frigessi,Peter Bühlmann,Marina Vannucci Conference proceedings
描述.This book features research contributions fromThe Abel Symposium on Statistical Analysis for High Dimensional Data, held inNyvågar, Lofoten, Norway, in May 2014...The focus of the symposium was on statisticaland machine learning methodologies specifically developed for inference in “bigdata” situations, with particular reference to genomic applications. Thecontributors, who are among the most prominent researchers on the theory ofstatistics for high dimensional inference, present new theories and methods, aswell as challenging applications and computational solutions. Specific themesinclude, among others, variable selection and screening, penalised regression,sparsity, thresholding, low dimensional structures, computational challenges,non-convex situations, learning graphical models, sparse covariance andprecision matrices, semi- and non-parametric formulations, multiple testing,classification, factor models, clustering, and preselection...Highlighting cutting-edge researchand casting light on future research directions, the contributions will benefitgraduate students and researchers in computational biology, statistics and themachine learning community..
出版日期Conference proceedings 2016
关键词dimension reduction; sparsity; statistical genomics; statistical inference in high dimensions; high dime
版次1
doihttps://doi.org/10.1007/978-3-319-27099-9
isbn_softcover978-3-319-80073-8
isbn_ebook978-3-319-27099-9Series ISSN 2193-2808 Series E-ISSN 2197-8549
issn_series 2193-2808
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

书目名称Statistical Analysis for High-Dimensional Data影响因子(影响力)




书目名称Statistical Analysis for High-Dimensional Data影响因子(影响力)学科排名




书目名称Statistical Analysis for High-Dimensional Data网络公开度




书目名称Statistical Analysis for High-Dimensional Data网络公开度学科排名




书目名称Statistical Analysis for High-Dimensional Data被引频次




书目名称Statistical Analysis for High-Dimensional Data被引频次学科排名




书目名称Statistical Analysis for High-Dimensional Data年度引用




书目名称Statistical Analysis for High-Dimensional Data年度引用学科排名




书目名称Statistical Analysis for High-Dimensional Data读者反馈




书目名称Statistical Analysis for High-Dimensional Data读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:57:11 | 显示全部楼层
发表于 2025-3-22 00:56:28 | 显示全部楼层
发表于 2025-3-22 07:48:01 | 显示全部楼层
发表于 2025-3-22 11:28:41 | 显示全部楼层
发表于 2025-3-22 16:36:22 | 显示全部楼层
iBATCGH: Integrative Bayesian Analysis of Transcriptomic and CGH Data,s of transcriptomic and genomic data, based on a hierarchical Bayesian model. Through the specification of a measurement error model we relate the gene expression levels to latent copy number states which, in turn, are related to the observed surrogate CGH measurement via a hidden Markov model. Sele
发表于 2025-3-22 17:28:28 | 显示全部楼层
发表于 2025-3-22 21:14:45 | 显示全部楼层
Combining Single and Paired End RNA-seq Data for Differential Expression Analyses,re we show how RUVs, a recently published method for removing unwanted variation and normalizing RNA-seq data, can combine the counts of single and paired end read libraries from formalin fixed, paraffin embedded tumor samples to permit differential expression analysis. Seven other intra- or inter-p
发表于 2025-3-23 01:48:45 | 显示全部楼层
发表于 2025-3-23 08:24:56 | 显示全部楼层
Bayesian Feature Allocation Models for Tumor Heterogeneity,l of the organism or local environment. This process results in the often observed heterogeneity of tumor samples. We review some recent work on a new class of feature allocation models for statistical inference on this tumor heterogeneity. We use next-generation sequencing data. The developed metho
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-29 09:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表