找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Space-Time Computing with Temporal Neural Networks; James E. Smith Book 2017 Springer Nature Switzerland AG 2017

[复制链接]
查看: 16271|回复: 48
发表于 2025-3-21 17:05:16 | 显示全部楼层 |阅读模式
书目名称Space-Time Computing with Temporal Neural Networks
编辑James E. Smith
视频video
丛书名称Synthesis Lectures on Computer Architecture
图书封面Titlebook: Space-Time Computing with Temporal Neural Networks;  James E. Smith Book 2017 Springer Nature Switzerland AG 2017
描述.Understanding and implementing the brain‘s computational paradigm is the one true grand challenge facing computer researchers. Not only are the brain‘s computational capabilities far beyond those of conventional computers, its energy efficiency is truly remarkable. This book, written from the perspective of a computer designer and targeted at computer researchers, is intended to give both background and lay out a course of action for studying the brain‘s computational paradigm. It contains a mix of concepts and ideas drawn from computational neuroscience, combined with those of the author...As background, relevant biological features are described in terms of their computational and communication properties. The brain‘s neocortex is constructed of massively interconnected neurons that compute and communicate via voltage spikes, and a strong argument can be made that precise spike timing is an essential element of the paradigm. Drawing from the biological features, a mathematics-based computational paradigm is constructed. The key feature is spiking neurons that perform communication and processing in space-time, with emphasis on time. In these paradigms, time is used as a freely a
出版日期Book 2017
版次1
doihttps://doi.org/10.1007/978-3-031-01754-4
isbn_softcover978-3-031-00626-5
isbn_ebook978-3-031-01754-4Series ISSN 1935-3235 Series E-ISSN 1935-3243
issn_series 1935-3235
copyrightSpringer Nature Switzerland AG 2017
The information of publication is updating

书目名称Space-Time Computing with Temporal Neural Networks影响因子(影响力)




书目名称Space-Time Computing with Temporal Neural Networks影响因子(影响力)学科排名




书目名称Space-Time Computing with Temporal Neural Networks网络公开度




书目名称Space-Time Computing with Temporal Neural Networks网络公开度学科排名




书目名称Space-Time Computing with Temporal Neural Networks被引频次




书目名称Space-Time Computing with Temporal Neural Networks被引频次学科排名




书目名称Space-Time Computing with Temporal Neural Networks年度引用




书目名称Space-Time Computing with Temporal Neural Networks年度引用学科排名




书目名称Space-Time Computing with Temporal Neural Networks读者反馈




书目名称Space-Time Computing with Temporal Neural Networks读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:57:55 | 显示全部楼层
发表于 2025-3-22 02:20:44 | 显示全部楼层
Clustering the MNIST DatasetAs a driver for developing a prototype TNN architecture, the MNIST benchmark [49] provides an excellent workload source. Normally, the MNIST dataset is used for classification. However, in this chapter we focus on clustering of the MNIST dataset via a TNN with unsupervised training.
发表于 2025-3-22 05:34:10 | 显示全部楼层
发表于 2025-3-22 11:19:16 | 显示全部楼层
发表于 2025-3-22 15:04:15 | 显示全部楼层
978-3-031-00626-5Springer Nature Switzerland AG 2017
发表于 2025-3-22 18:44:27 | 显示全部楼层
Space-Time Computing with Temporal Neural Networks978-3-031-01754-4Series ISSN 1935-3235 Series E-ISSN 1935-3243
发表于 2025-3-23 00:21:55 | 显示全部楼层
发表于 2025-3-23 04:35:43 | 显示全部楼层
发表于 2025-3-23 05:44:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 05:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表