找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Social Media Modeling and Computing; Steven C.H. Hoi,Jiebo Luo,Irwin King Book 2011 Springer-Verlag London Limited 2011 Data Mining.Machin

[复制链接]
楼主: Grievous
发表于 2025-3-28 15:19:42 | 显示全部楼层
发表于 2025-3-28 19:30:55 | 显示全部楼层
Social Media Visual Analytics for Eventsan easily become overwhelming, yet still contain information that may aid and augment understanding of the multimedia content via individual social media items, or aggregate information from the crowd’s response. In this work we discuss this opportunity in the context of a social media visual analyt
发表于 2025-3-29 02:57:59 | 显示全部楼层
Using Rich Social Media Information for Music Recommendation via Hypergraph Modeles such as Last.fm and Pandora. This information is valuable for music recommendation. However, there are two main challenges to exploit this rich social media information: (a) There are many different types of objects and relations in music social communities, which makes it difficult to develop a
发表于 2025-3-29 05:18:28 | 显示全部楼层
发表于 2025-3-29 11:05:43 | 显示全部楼层
Social Aspects of Photobooks: Improving Photobook Authoring from Large-Scale Multimedia Analysiss and paper souvenirs such as tickets over the pages of a photobook we tell a story to capture and share our memories. The photo memories captured in such a photobook tell us much about the content and the relevance of the photos for the user. The way in which we select photos and arrange them in th
发表于 2025-3-29 12:20:16 | 显示全部楼层
Combining Multi-modal Features for Social Media Analysis the means to define a latent semantic space where heterogeneous types of information can be effectively combined. Tagged images taken from social sites have been used in the characteristic scenarios of image clustering and retrieval, to demonstrate the benefits of multi-modal analysis in social media.
发表于 2025-3-29 19:39:06 | 显示全部楼层
发表于 2025-3-29 20:51:11 | 显示全部楼层
发表于 2025-3-30 02:18:22 | 显示全部楼层
发表于 2025-3-30 05:41:24 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 07:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表