用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Smart Cities, Green Technologies, and Intelligent Transport Systems; 10th International C Cornel Klein,Matthias Jarke,Oleg Gusikhin Confere

[复制链接]
查看: 34924|回复: 62
发表于 2025-3-21 17:14:11 | 显示全部楼层 |阅读模式
书目名称Smart Cities, Green Technologies, and Intelligent Transport Systems
副标题10th International C
编辑Cornel Klein,Matthias Jarke,Oleg Gusikhin
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Smart Cities, Green Technologies, and Intelligent Transport Systems; 10th International C Cornel Klein,Matthias Jarke,Oleg Gusikhin Confere
描述​This book includes extended and revised selected papers from the 10th International Conference on Smart Cities and Green ICT Systems, SMARTGREENS 2021, and 7th International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS 2021, held as virtual event, in April 28–30, 2021. The conference was held virtually due to the COVID-19 crisis..The 22 full papers included in this book were carefully reviewed and selected from 140 submissions. The papers present research on advances and applications in the fields of smart cities, electric vehicles, sustainable computing and communications, energy aware systems and technologies, intelligent vehicle technologies, intelligent transport systems and infrastructure, connected vehicles..
出版日期Conference proceedings 2022
关键词Computer Science; Informatics; Conference Proceedings; Research; Applications
版次1
doihttps://doi.org/10.1007/978-3-031-17098-0
isbn_softcover978-3-031-17097-3
isbn_ebook978-3-031-17098-0Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Switzerland AG 2022
The information of publication is updating

书目名称Smart Cities, Green Technologies, and Intelligent Transport Systems影响因子(影响力)




书目名称Smart Cities, Green Technologies, and Intelligent Transport Systems影响因子(影响力)学科排名




书目名称Smart Cities, Green Technologies, and Intelligent Transport Systems网络公开度




书目名称Smart Cities, Green Technologies, and Intelligent Transport Systems网络公开度学科排名




书目名称Smart Cities, Green Technologies, and Intelligent Transport Systems被引频次




书目名称Smart Cities, Green Technologies, and Intelligent Transport Systems被引频次学科排名




书目名称Smart Cities, Green Technologies, and Intelligent Transport Systems年度引用




书目名称Smart Cities, Green Technologies, and Intelligent Transport Systems年度引用学科排名




书目名称Smart Cities, Green Technologies, and Intelligent Transport Systems读者反馈




书目名称Smart Cities, Green Technologies, and Intelligent Transport Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:41:34 | 显示全部楼层
Identifying Requirements to Model a Data Lifecycle in Smart City Frameworksentified with aid of a data taxonomy. Furthermore, five smart city frameworks will be analyzed using requirements identified in this study as a reference, as well as a new illustrative use case that uses sensitive information will be presented.
发表于 2025-3-22 03:35:03 | 显示全部楼层
发表于 2025-3-22 08:18:39 | 显示全部楼层
发表于 2025-3-22 08:44:00 | 显示全部楼层
发表于 2025-3-22 13:16:36 | 显示全部楼层
发表于 2025-3-22 20:42:45 | 显示全部楼层
Building Rich Interior Hazard Maps for Public Safetyreover, we used two of the scanned buildings as a case study to illustrate our process and show detailed evaluation results. Our results show that the deep neural network . with transfer learning and hard-negative mining performs well in labeling public-safety objects in our image dataset, especiall
发表于 2025-3-23 00:12:04 | 显示全部楼层
A Scalable Approach to Vocation and Fleet Identification for Heavy-Duty Vehiclesdicate that both vocation and fleet identification are possible with a high level of accuracy. The macro average precision and recall of the SVM vocation classifier are approximately 85%. This result was achieved despite the fact that each vocation consisted of multiple fleets. The macro average pre
发表于 2025-3-23 01:44:27 | 显示全部楼层
A New Traffic Sign Detection Technique Using Two-Stage Convolutional Neural Networksed out the videos acquired from highway, suburb and urban scenarios. The experimental results obtained using Faster R-CNN for detection combined with VGG for classification have demonstrated its superior performance compared to YOLOv3 and Mask R-CNN.
发表于 2025-3-23 08:02:35 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 19:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表