找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Single-Instruction Multiple-Data Execution; Christopher J. Hughes Book 2015 Springer Nature Switzerland AG 2015

[复制链接]
查看: 8091|回复: 35
发表于 2025-3-21 18:02:03 | 显示全部楼层 |阅读模式
书目名称Single-Instruction Multiple-Data Execution
编辑Christopher J. Hughes
视频video
丛书名称Synthesis Lectures on Computer Architecture
图书封面Titlebook: Single-Instruction Multiple-Data Execution;  Christopher J. Hughes Book 2015 Springer Nature Switzerland AG 2015
描述Having hit power limitations to even more aggressive out-of-order execution in processor cores, many architects in the past decade have turned to single-instruction-multiple-data (SIMD) execution to increase single-threaded performance. SIMD execution, or having a single instruction drive execution of an identical operation on multiple data items, was already well established as a technique to efficiently exploit data parallelism. Furthermore, support for it was already included in many commodity processors. However, in the past decade, SIMD execution has seen a dramatic increase in the set of applications using it, which has motivated big improvements in hardware support in mainstream microprocessors. The easiest way to provide a big performance boost to SIMD hardware is to make it wider—i.e., increase the number of data items hardware operates on simultaneously. Indeed, microprocessor vendors have done this. However, as we exploit more data parallelism in applications, certain challenges can negatively impact performance. In particular, conditional execution, non-contiguous memory accesses, and the presence of some dependences across data items are key roadblocks to achieving pea
出版日期Book 2015
版次1
doihttps://doi.org/10.1007/978-3-031-01746-9
isbn_softcover978-3-031-00618-0
isbn_ebook978-3-031-01746-9Series ISSN 1935-3235 Series E-ISSN 1935-3243
issn_series 1935-3235
copyrightSpringer Nature Switzerland AG 2015
The information of publication is updating

书目名称Single-Instruction Multiple-Data Execution影响因子(影响力)




书目名称Single-Instruction Multiple-Data Execution影响因子(影响力)学科排名




书目名称Single-Instruction Multiple-Data Execution网络公开度




书目名称Single-Instruction Multiple-Data Execution网络公开度学科排名




书目名称Single-Instruction Multiple-Data Execution被引频次




书目名称Single-Instruction Multiple-Data Execution被引频次学科排名




书目名称Single-Instruction Multiple-Data Execution年度引用




书目名称Single-Instruction Multiple-Data Execution年度引用学科排名




书目名称Single-Instruction Multiple-Data Execution读者反馈




书目名称Single-Instruction Multiple-Data Execution读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:30:11 | 显示全部楼层
Christopher J. Hughesndividualisierung lösen Homogenisierungsversuche ab. Das Streben nach homogenen Lerngruppen gehört zwar nicht gänzlich der Vergangenheit an, doch wird es zunehmend kritischer beäugt. . hat sich in dieser Zeit derart in pädagogischen und didaktischen Diskursen verankert, dass sie dem Status eines ver
发表于 2025-3-22 03:17:55 | 显示全部楼层
Christopher J. Hugheser Herausbildung der Lehrwerkstätten in den ersten Jahrzehnten dieses Jahrhunderts begonnen hat und die über viele Jahrzehnte schrittweise weiterentwikkelt worden ist. Gerade angesichts der neueren Entwicklungen, bedingt durch neue Produktionskonzepte und neue Ausbildungsberufe, sind hier deutliche
发表于 2025-3-22 06:23:29 | 显示全部楼层
发表于 2025-3-22 10:29:15 | 显示全部楼层
发表于 2025-3-22 14:32:17 | 显示全部楼层
Synthesis Lectures on Computer Architecturehttp://image.papertrans.cn/s/image/867848.jpg
发表于 2025-3-22 19:56:13 | 显示全部楼层
978-3-031-00618-0Springer Nature Switzerland AG 2015
发表于 2025-3-23 00:02:58 | 显示全部楼层
发表于 2025-3-23 01:45:25 | 显示全部楼层
发表于 2025-3-23 07:07:14 | 显示全部楼层
Book 2015le-instruction-multiple-data (SIMD) execution to increase single-threaded performance. SIMD execution, or having a single instruction drive execution of an identical operation on multiple data items, was already well established as a technique to efficiently exploit data parallelism. Furthermore, su
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 09:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表