找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes; Quasi-Coherent Torsi Leonid Positselski Book 2023 The Editor(s)

[复制链接]
楼主: Dopamine
发表于 2025-3-25 06:15:12 | 显示全部楼层
发表于 2025-3-25 09:19:56 | 显示全部楼层
发表于 2025-3-25 14:25:17 | 显示全部楼层
Flat Affine Ind-Schemes over Ind-Schemes of Ind-Finite Type,fine morphism of schemes. The aim of this chapter is to describe the semitensor product functor as the composition of the left derived *-restriction and the right derived !-restriction of the external tensor product.
发表于 2025-3-25 16:09:40 | 显示全部楼层
Invariance Under Postcomposition with a Smooth Morphism,et . denote the composition .. Let . be a dualizing complex on .; then . is a dualizing complex on .. The aim of this chapter is to show that the constructions of Chaps. 7–8, including the semiderived category of quasi-coherent torsion sheaves on . and the semitensor product operation on it, are pre
发表于 2025-3-25 22:35:30 | 显示全部楼层
发表于 2025-3-26 02:56:28 | 显示全部楼层
Book 2023meant by an algebraic variety of semi-infinite nature. Then he applies the framework of semiderived categories, suggested in his previous monograph titled .Homological Algebra of Semimodules and Semicontramodules., (Birkhäuser, 2010), to the study of semi-infinite algebraic varieties. Quasi-coherent
发表于 2025-3-26 06:55:29 | 显示全部楼层
发表于 2025-3-26 08:59:32 | 显示全部楼层
algebraic geometry to come.Explores the semi-infinite tensorSemi-Infinite Geometry is a theory of "doubly infinite-dimensional" geometric or topological objects. In this book the author explains what should be meant by an algebraic variety of semi-infinite nature. Then he applies the framework of se
发表于 2025-3-26 15:28:50 | 显示全部楼层
0340-4773 ed students informed of the latest developments and results in all areas of the plant sciences. This latest volume includes reviews on plant physiology, biochemistry, genetics and genomics, forests, and ecosystems..978-3-031-45756-2978-3-031-45754-8Series ISSN 0340-4773 Series E-ISSN 2197-8492
发表于 2025-3-26 18:31:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-5 15:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表