找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Schrödinger Equations and Diffusion Theory; Masao Nagasawa Book 1993 Springer Basel AG 1993 chaos.diffusion process.probability.probabilit

[复制链接]
楼主: FORGE
发表于 2025-3-25 04:04:05 | 显示全部楼层
发表于 2025-3-25 07:34:50 | 显示全部楼层
发表于 2025-3-25 15:26:12 | 显示全部楼层
,The Schrödinger Equation can be a Boltzmann Equation,(see (8.4) below) of the renormalized process ., or a diffusion process constructed by the method of Chapter 6 for a given function ϕ(.). In the latter case we take the creation and killing . = -.ϕ/ϕ induced by ϕ(.), and another function . such that ., and moreover assume the admissibility condition
发表于 2025-3-25 17:39:33 | 显示全部楼层
发表于 2025-3-25 21:41:08 | 显示全部楼层
发表于 2025-3-26 01:08:26 | 显示全部楼层
1017-0480 shows that the Schrödinger equation and diffusion equations in duality are equivalent. In turn, Schrödinger‘s conjecture of 1931 is solved. The theory of diffusion processes for the Schrödinger equation tell us that we must go further into the theory of systems of (infinitely) many interacting quan
发表于 2025-3-26 07:32:51 | 显示全部楼层
发表于 2025-3-26 12:07:53 | 显示全部楼层
Diffusion Processes and their Transformations,n the following chapters. Moreover, transformations of diffusion processes by means of multiplicative functionals, a renormalization of Kac’s semi-groups, and Feller’s one-dimensional diffusion processes will be explained.
发表于 2025-3-26 16:09:54 | 显示全部楼层
Duality and Time Reversal of Diffusion Processes,be applied to time-inhomogeneous diffusion processes in the third and fourth sections. Moreover, two different representations of a diffusion process will be established. They will play a crucial role in connection with quantum mechanics in Chapter 4.
发表于 2025-3-26 18:56:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 12:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表