找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Scale Space and Variational Methods in Computer Vision; 7th International Co Jan Lellmann,Martin Burger,Jan Modersitzki Conference proceedi

[复制链接]
楼主: 帐簿
发表于 2025-3-25 04:27:27 | 显示全部楼层
978-3-030-22367-0Springer Nature Switzerland AG 2019
发表于 2025-3-25 08:43:33 | 显示全部楼层
发表于 2025-3-25 13:58:08 | 显示全部楼层
发表于 2025-3-25 19:18:00 | 显示全部楼层
https://doi.org/10.1007/978-3-030-22368-7artificial intelligence; computer vision; estimation; image coding; image compression; image processing; i
发表于 2025-3-25 21:43:25 | 显示全部楼层
An Iteration Method for X-Ray CT Reconstruction from Variable-Truncation Projection Datae regularization parameter can be determined easily using the artifact severity estimation on the identified background points. Numerical experiments on simulated data with different noise levels are conducted to verify the effectiveness of the proposed method.
发表于 2025-3-26 00:52:36 | 显示全部楼层
发表于 2025-3-26 06:48:25 | 显示全部楼层
Deep Eikonal Solversl solutions of the Eikonal equation computed on different surfaces. The proposed approach leverages the approximation power of neural networks to enhance the performance of numerical algorithms, thereby, connecting the somewhat disparate themes of numerical geometry and learning.
发表于 2025-3-26 09:45:47 | 显示全部楼层
Towards PDE-Based Video Compression with Optimal Masks and Optic Flowease in the computational complexity. As a proof-of-concept, we evaluate the proposed approach for multiple sequences with different characteristics. We show that the method preserves a reasonable quality in the reconstruction, and is very robust against errors in the flow field.
发表于 2025-3-26 16:15:52 | 显示全部楼层
Iterative Sampled Methods for Massive and Separable Nonlinear Inverse Problemsonov method within a nonlinear optimization framework. The proposed method is computationally efficient in that it only uses available data at any iteration to update both sets of parameters. Numerical experiments applied to massive super-resolution image reconstruction problems show the power of these methods.
发表于 2025-3-26 17:23:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 15:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表