找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Scalable Uncertainty Management; Second International Sergio Greco,Thomas Lukasiewicz Conference proceedings 2008 Springer-Verlag Berlin He

[复制链接]
查看: 20031|回复: 61
发表于 2025-3-21 19:04:47 | 显示全部楼层 |阅读模式
书目名称Scalable Uncertainty Management
副标题Second International
编辑Sergio Greco,Thomas Lukasiewicz
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Scalable Uncertainty Management; Second International Sergio Greco,Thomas Lukasiewicz Conference proceedings 2008 Springer-Verlag Berlin He
描述This book constitutes the refereed proceedings of the Second International Conference on Scalable Uncertainty Management, SUM 2008, held in Naples, Italy, in Oktober 2008. The 27 revised full papers presented together with the extended abstracts of 3 invited talks/tutorials were carefully reviewed and selected from 42 submissions. The papers address artificial intelligence researchers, database researchers, and practitioners to demonstrate theoretical techniques required to manage the uncertainty that arises in large scale real world applications and to cope with large volumes of uncertainty and inconsistency in databases, the Web, the semantic Web, and artificial intelligence in general.
出版日期Conference proceedings 2008
关键词algorithmic learning; answer set programs; artificial intelligence; bayesian networks; causal networks; c
版次1
doihttps://doi.org/10.1007/978-3-540-87993-0
isbn_softcover978-3-540-87992-3
isbn_ebook978-3-540-87993-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

书目名称Scalable Uncertainty Management影响因子(影响力)




书目名称Scalable Uncertainty Management影响因子(影响力)学科排名




书目名称Scalable Uncertainty Management网络公开度




书目名称Scalable Uncertainty Management网络公开度学科排名




书目名称Scalable Uncertainty Management被引频次




书目名称Scalable Uncertainty Management被引频次学科排名




书目名称Scalable Uncertainty Management年度引用




书目名称Scalable Uncertainty Management年度引用学科排名




书目名称Scalable Uncertainty Management读者反馈




书目名称Scalable Uncertainty Management读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:44:51 | 显示全部楼层
,Managing Probabilistic Data with MystiQ: The Can-Do, the Could-Do, and the Can’t-Do,r a re-implementation from scratch is that it can leverage the infrastructure of an existing database engine, e.g. indexes, query evaluation, query optimization, etc. Furthermore, MystiQ attempts to perform most of the probabilistic inference inside the relational database engine. MystiQ is currently available from ..
发表于 2025-3-22 03:28:15 | 显示全部楼层
Loopy Propagation in a Probabilistic Description Logic, this context, inference is equated with calculation of (bounds on) posterior probability in relational credal/Bayesian networks. As exact inference does not seem scalable due to the presence of quantifiers, we present first-order loopy propagation methods that seem to behave appropriately for non-trivial domain sizes.
发表于 2025-3-22 08:30:15 | 显示全部楼层
发表于 2025-3-22 09:18:46 | 显示全部楼层
Transitive Observation-Based Causation, Saliency, and the Markov Condition,antitative model, and a Saliency condition (if . is true then generally . is true) for the qualitative model. We explore the formal relations between these sufficient conditions, and between the underlying definitions of observation-based causation. These connections shed light on the range of applicability of both models.
发表于 2025-3-22 14:11:12 | 显示全部楼层
Tractable Reasoning with Bayesian Description Logics,tisfiability checking and answering unions of conjunctive queries in the new logics can be done in LogSpace in the data complexity. For this reason, the new probabilistic description logics are very promising formalisms for data-intensive applications in the Semantic Web involving probabilistic uncertainty.
发表于 2025-3-22 19:14:50 | 显示全部楼层
发表于 2025-3-22 22:02:07 | 显示全部楼层
An Efficient Algorithm for Naive Possibilistic Classifiers with Uncertain Inputs,ithm is particularly suitable for classification with uncertain inputs since it allows classification in polynomial time using different efficient transformations of initial naive possibilistic networks.
发表于 2025-3-23 04:59:40 | 显示全部楼层
发表于 2025-3-23 08:12:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 22:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表