找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Salinity and Drought Tolerance in Plants; Physiological Perspe Ashwani Kumar,Pooja Dhansu,Anita Mann Book 2023 The Editor(s) (if applicable

[复制链接]
楼主: Coronary-Artery
发表于 2025-4-1 03:00:17 | 显示全部楼层
Strategies to Improve Drought and Salinity Tolerance in Some Cash Crops Through Proteomics Perspecthanging climatic conditions driven by anthropogenic activities. In the current scenario, it is utmost important that we reduce these crop losses and enhance the production to meet the increasing food demands. Therefore, the development of more tolerant new varieties is important to ensure food secur
发表于 2025-4-1 08:30:17 | 显示全部楼层
Insights in Metabolomics Responses to Drought and Salinity Stress in Crop Plants, and salinity stress were the most significant in reducing the plant productivity. Nevertheless, because of its cumulative, subtle effects, and multifaceted nature, it negatively affects the morphological, physiological, biochemical, and molecular characteristics of plants and renders their ability
发表于 2025-4-1 11:40:26 | 显示全部楼层
Transcriptional Regulatory Network Involved in Drought and Salt Stress Response in Rice,ll differentiation, stress signaling pathways in plants, and protective genome activities in response to water and salt stress conditions. TFs are specialized proteins which bind to specific DNA elements in gene promoters and modulate gene expression in response to various external and internal stim
发表于 2025-4-1 14:44:01 | 显示全部楼层
Advancement of Omics Approaches in Understanding the Mechanism of Salinity Tolerance in Legumes,n of atmospheric nitrogen. Globally, legume crop production is challenged adversely by salinity stress, but the effect is variable from genotype to genotype and further in genotypes from stage to stage. Plants adapt to salinity induced changes through complex mechanisms and several omics-based studi
发表于 2025-4-1 22:15:48 | 显示全部楼层
发表于 2025-4-1 23:12:22 | 显示全部楼层
Exploiting Integrated Breeding Strategies to Improve Salinity Tolerance in Crop Plants, is one of the primary key variables that inhibit plant growth and productivity among other abiotic stresses. The growing negative effects of salinity stress (SS) are putting global food and nutritional security at jeopardy. Plants respond to high salinity stress by initiating a series of events and
发表于 2025-4-2 05:21:57 | 显示全部楼层
Current Status and Future Perspectives of Epigenetic Gene Regulation for Salt Tolerance in Wheat,ps like wheat grow in dynamic field environments where they are continuously exposed to the vagaries of nature, greatly distorting their growth, yield and reproductive success. Among the various abiotic stresses, salt stress has emerged as a major problem impacting both the crop yield and quality. S
发表于 2025-4-2 07:39:29 | 显示全部楼层
Halophytic Plants: A Potential Resource That Reduces Water Crisis in Future,l over the world. These changes have decreased crop yield and upset the balance of ecosystems. Water shortages have been getting worse, and the problem is worse in dry areas. This leads to poverty and other problems in society and the economy. Therefore, for long-term development, an integrated appr
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 10:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表