找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Robust Network Compressive Sensing; Guangtao Xue,Yi-Chao Chen,Minglu Li Book 2022 The Author(s), under exclusive license to Springer Natur

[复制链接]
查看: 6889|回复: 39
发表于 2025-3-21 16:43:39 | 显示全部楼层 |阅读模式
书目名称Robust Network Compressive Sensing
编辑Guangtao Xue,Yi-Chao Chen,Minglu Li
视频video
概述Provides anomaly detection technologies for various networking data from Internet.Introduces the theory and assumption behind the compressive sensing technology.Covers the theory of compressive sensin
丛书名称SpringerBriefs in Computer Science
图书封面Titlebook: Robust Network Compressive Sensing;  Guangtao Xue,Yi-Chao Chen,Minglu Li Book 2022 The Author(s), under exclusive license to Springer Natur
描述.This book investigates compressive sensing techniques to provide a robust and general framework for network data analytics. The goal is to introduce a compressive sensing framework for missing data interpolation, anomaly detection, data segmentation and activity recognition, and to demonstrate its benefits. Chapter 1 introduces compressive sensing, including its definition, limitation, and how it supports different network analysis applications. Chapter 2 demonstrates the feasibility of compressive sensing in network analytics, the authors we apply it to detect anomalies in the customer care call dataset from a Tier 1 ISP in the United States. A regression-based model is applied to find the relationship between calls and events. The authors illustrate that compressive sensing is effective in identifying important factors and can leverage the low-rank structure and temporal stability to improve the detection accuracy. Chapter 3  discusses that there are several challenges in applying compressive sensing to real-world data. Understanding the reasons behind the challenges is important for designing methods and mitigating their impact. The authors analyze a wide range of real-world tr
出版日期Book 2022
关键词Network analytics; Anomaly detection; Compressive sensing; Activity recognition; Data-driven synchroniza
版次1
doihttps://doi.org/10.1007/978-3-031-16829-1
isbn_softcover978-3-031-16828-4
isbn_ebook978-3-031-16829-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2022
The information of publication is updating

书目名称Robust Network Compressive Sensing影响因子(影响力)




书目名称Robust Network Compressive Sensing影响因子(影响力)学科排名




书目名称Robust Network Compressive Sensing网络公开度




书目名称Robust Network Compressive Sensing网络公开度学科排名




书目名称Robust Network Compressive Sensing被引频次




书目名称Robust Network Compressive Sensing被引频次学科排名




书目名称Robust Network Compressive Sensing年度引用




书目名称Robust Network Compressive Sensing年度引用学科排名




书目名称Robust Network Compressive Sensing读者反馈




书目名称Robust Network Compressive Sensing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:28:01 | 显示全部楼层
发表于 2025-3-22 03:40:36 | 显示全部楼层
Book 2022a compressive sensing framework for missing data interpolation, anomaly detection, data segmentation and activity recognition, and to demonstrate its benefits. Chapter 1 introduces compressive sensing, including its definition, limitation, and how it supports different network analysis applications.
发表于 2025-3-22 07:19:26 | 显示全部楼层
发表于 2025-3-22 12:36:41 | 显示全部楼层
Robust Network Compressive Sensing978-3-031-16829-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
发表于 2025-3-22 13:07:27 | 显示全部楼层
Introduction,opportunities for network analytics. Network analytics can provide deep insights into the complex interactions among network entities, and has a wide range of applications in wireless networks across all protocol layers.
发表于 2025-3-22 18:14:55 | 显示全部楼层
SpringerBriefs in Computer Sciencehttp://image.papertrans.cn/r/image/831336.jpg
发表于 2025-3-22 23:17:04 | 显示全部楼层
发表于 2025-3-23 02:21:45 | 显示全部楼层
发表于 2025-3-23 07:25:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-12 20:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表