找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Resampling Methods for Dependent Data; S. N. Lahiri Book 2003 Springer-Verlag New York 2003 Bootstrapping.Resampling.Ringe.STATISTICA.perm

[复制链接]
查看: 48662|回复: 50
发表于 2025-3-21 16:07:32 | 显示全部楼层 |阅读模式
书目名称Resampling Methods for Dependent Data
编辑S. N. Lahiri
视频video
丛书名称Springer Series in Statistics
图书封面Titlebook: Resampling Methods for Dependent Data;  S. N. Lahiri Book 2003 Springer-Verlag New York 2003 Bootstrapping.Resampling.Ringe.STATISTICA.perm
描述This is a book on bootstrap and related resampling methods for temporal and spatial data exhibiting various forms of dependence. Like the resam­ pling methods for independent data, these methods provide tools for sta­ tistical analysis of dependent data without requiring stringent structural assumptions. This is an important aspect of the resampling methods in the dependent case, as the problem of model misspecification is more preva­ lent under dependence and traditional statistical methods are often very sensitive to deviations from model assumptions. Following the tremendous success of Efron‘s (1979) bootstrap to provide answers to many complex problems involving independent data and following Singh‘s (1981) example on the inadequacy of the method under dependence, there have been several attempts in the literature to extend the bootstrap method to the dependent case. A breakthrough was achieved when resampling of single observations was replaced with block resampling, an idea that was put forward by Hall (1985), Carlstein (1986), Kiinsch (1989), Liu and Singh (1992), and others in various forms and in different inference problems. There has been a vig­ orous development in the
出版日期Book 2003
关键词Bootstrapping; Resampling; Ringe; STATISTICA; permutation tests; statistics
版次1
doihttps://doi.org/10.1007/978-1-4757-3803-2
isbn_softcover978-1-4419-1848-2
isbn_ebook978-1-4757-3803-2Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer-Verlag New York 2003
The information of publication is updating

书目名称Resampling Methods for Dependent Data影响因子(影响力)




书目名称Resampling Methods for Dependent Data影响因子(影响力)学科排名




书目名称Resampling Methods for Dependent Data网络公开度




书目名称Resampling Methods for Dependent Data网络公开度学科排名




书目名称Resampling Methods for Dependent Data被引频次




书目名称Resampling Methods for Dependent Data被引频次学科排名




书目名称Resampling Methods for Dependent Data年度引用




书目名称Resampling Methods for Dependent Data年度引用学科排名




书目名称Resampling Methods for Dependent Data读者反馈




书目名称Resampling Methods for Dependent Data读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:50:38 | 显示全部楼层
发表于 2025-3-22 03:31:43 | 显示全部楼层
发表于 2025-3-22 05:45:43 | 显示全部楼层
发表于 2025-3-22 11:45:32 | 显示全部楼层
Comparison of Block Bootstrap Methods,t a simulated data example and illustrate the behavior of the block bootstrap methods under some simple time series models. Although the example treats the simple case of the sample mean, it provides a representative picture of the properties of the four methods in more general problems. In the subs
发表于 2025-3-22 15:02:47 | 显示全部楼层
发表于 2025-3-22 20:02:22 | 显示全部楼层
发表于 2025-3-23 01:15:39 | 显示全部楼层
发表于 2025-3-23 01:38:42 | 显示全部楼层
发表于 2025-3-23 09:00:29 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 13:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表