找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Representation in Machine Learning; M. N. Murty,M. Avinash Book 2023 The Author(s), under exclusive license to Springer Nature Singapore P

[复制链接]
查看: 27443|回复: 37
发表于 2025-3-21 17:35:56 | 显示全部楼层 |阅读模式
书目名称Representation in Machine Learning
编辑M. N. Murty,M. Avinash
视频video
概述Provides comprehensive coverage of Machine Learning representation techniques.Demonstrates the performance of various representation techniques using benchmark datasets.Illustrates the content using e
丛书名称SpringerBriefs in Computer Science
图书封面Titlebook: Representation in Machine Learning;  M. N. Murty,M. Avinash Book 2023 The Author(s), under exclusive license to Springer Nature Singapore P
描述.This book provides a concise but comprehensive guide to representation, which forms the core of Machine Learning (ML). State-of-the-art practical applications involve a number of challenges for the analysis of high-dimensional data. Unfortunately, many popular ML algorithms fail to perform, in both theory and practice, when they are confronted with the huge size of the underlying data. Solutions to this problem are aptly covered in the book..In addition, the book covers a wide range of representation techniques that are important for academics and ML practitioners alike, such as Locality Sensitive Hashing (LSH), Distance Metrics and Fractional Norms, Principal Components (PCs), Random Projections and Autoencoders. Several experimental results are provided in the book to demonstrate the discussed techniques’ effectiveness..
出版日期Book 2023
关键词Representation; Dimensionality Reduction; Machine Learning; Data Mining; Autoencoder; Locality Sensitive
版次1
doihttps://doi.org/10.1007/978-981-19-7908-8
isbn_softcover978-981-19-7907-1
isbn_ebook978-981-19-7908-8Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
The information of publication is updating

书目名称Representation in Machine Learning影响因子(影响力)




书目名称Representation in Machine Learning影响因子(影响力)学科排名




书目名称Representation in Machine Learning网络公开度




书目名称Representation in Machine Learning网络公开度学科排名




书目名称Representation in Machine Learning被引频次




书目名称Representation in Machine Learning被引频次学科排名




书目名称Representation in Machine Learning年度引用




书目名称Representation in Machine Learning年度引用学科排名




书目名称Representation in Machine Learning读者反馈




书目名称Representation in Machine Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:58:58 | 显示全部楼层
发表于 2025-3-22 01:23:24 | 显示全部楼层
发表于 2025-3-22 07:59:48 | 显示全部楼层
发表于 2025-3-22 12:06:10 | 显示全部楼层
发表于 2025-3-22 15:22:05 | 显示全部楼层
发表于 2025-3-22 19:05:22 | 显示全部楼层
发表于 2025-3-22 22:54:57 | 显示全部楼层
发表于 2025-3-23 02:16:46 | 显示全部楼层
Book 2023itive Hashing (LSH), Distance Metrics and Fractional Norms, Principal Components (PCs), Random Projections and Autoencoders. Several experimental results are provided in the book to demonstrate the discussed techniques’ effectiveness..
发表于 2025-3-23 09:08:18 | 显示全部楼层
Nearest Neighbor Algorithms, demands but also in terms of classification performance. It is very obvious when the learning algorithms are dependent on distances. In this chapter, we present the difficulties and possible solutions to deal with such high-dimensional data classification.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 11:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表