找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Reinforcement Learning for Finance; Solve Problems in Fi Samit Ahlawat Book 2023 Samit Ahlawat 2023 Reinforcement Learning.Artificial Intel

[复制链接]
查看: 33696|回复: 35
发表于 2025-3-21 19:42:46 | 显示全部楼层 |阅读模式
书目名称Reinforcement Learning for Finance
副标题Solve Problems in Fi
编辑Samit Ahlawat
视频video
概述Covers reinforcement learning concepts with mathematical theory and practical application.Explains cutting-edge advances in reinforcement learning algorithms..Covers convolutional neural networks and
图书封面Titlebook: Reinforcement Learning for Finance; Solve Problems in Fi Samit Ahlawat Book 2023 Samit Ahlawat 2023 Reinforcement Learning.Artificial Intel
描述This book introduces reinforcement learning with mathematical theory and practical examples from quantitative finance using the TensorFlow library..Reinforcement Learning for Finance. begins by describing methods for training neural networks. Next, it discusses CNN and RNN – two kinds of neural networks used as deep learning networks in reinforcement learning. Further, the book dives into reinforcement learning theory, explaining the Markov decision process, value function, policy, and policy gradients, with their mathematical formulations and learning algorithms. It covers recent reinforcement learning algorithms from double deep-Q networks to twin-delayed deep deterministic policy gradients and generative adversarial networks with examples using the TensorFlow Python library. It also serves as a quick hands-on guide to TensorFlow programming, covering concepts ranging from variables and graphs to automatic differentiation, layers, models, andloss functions..After completing this book, you will understand reinforcement learning with deep q and generative adversarial networks using the TensorFlow library..What You Will Learn.Understand the fundamentals of reinforcement learning.App
出版日期Book 2023
关键词Reinforcement Learning; Artificial Intelligence; Python; Machine Learning; TensorFlow; RlPy Libraries; Alg
版次1
doihttps://doi.org/10.1007/978-1-4842-8835-1
isbn_softcover978-1-4842-8834-4
isbn_ebook978-1-4842-8835-1
copyrightSamit Ahlawat 2023
The information of publication is updating

书目名称Reinforcement Learning for Finance影响因子(影响力)




书目名称Reinforcement Learning for Finance影响因子(影响力)学科排名




书目名称Reinforcement Learning for Finance网络公开度




书目名称Reinforcement Learning for Finance网络公开度学科排名




书目名称Reinforcement Learning for Finance被引频次




书目名称Reinforcement Learning for Finance被引频次学科排名




书目名称Reinforcement Learning for Finance年度引用




书目名称Reinforcement Learning for Finance年度引用学科排名




书目名称Reinforcement Learning for Finance读者反馈




书目名称Reinforcement Learning for Finance读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:59:10 | 显示全部楼层
Recurrent Neural Networks, involves unrolling the network through time and using backpropagation. Vanishing gradients pose a challenge to training RNNs, as the examples will demonstrate. A LSTM network was proposed by Hochreiter and Schmidhuber in 1997. In 2007, it was applied to speech recognition with outstanding results.
发表于 2025-3-22 02:04:46 | 显示全部楼层
发表于 2025-3-22 08:08:49 | 显示全部楼层
this book, you will understand reinforcement learning with deep q and generative adversarial networks using the TensorFlow library..What You Will Learn.Understand the fundamentals of reinforcement learning.App978-1-4842-8834-4978-1-4842-8835-1
发表于 2025-3-22 09:51:03 | 显示全部楼层
发表于 2025-3-22 16:49:17 | 显示全部楼层
Samit Ahlawatdie Uniformität — der westlichen Zivilisation zu stärken und um ohne nationale Einengungen große Aufgaben in Angriff nehmen zu können, welche den Kräften einzelner Länder nicht voll zugänglich sind (ich denke an das internationale Geophysikalische Jahr, oder an das erfolgreiche Unternehmen von CERN
发表于 2025-3-22 20:33:37 | 显示全部楼层
发表于 2025-3-22 22:18:09 | 显示全部楼层
发表于 2025-3-23 04:00:27 | 显示全部楼层
发表于 2025-3-23 06:08:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-20 09:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表