找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Reinforcement Learning; With Open AI, Tensor Abhishek Nandy,Manisha Biswas Book 2018 Abhishek Nandy and Manisha Biswas 2018 Reinforcement

[复制链接]
查看: 14442|回复: 36
发表于 2025-3-21 19:01:05 | 显示全部楼层 |阅读模式
书目名称Reinforcement Learning
副标题With Open AI, Tensor
编辑Abhishek Nandy,Manisha Biswas
视频video
概述Discusses Open AI and Open AI Gym with relevance to reinforcement learning.Application of TensorFlow and Keras to reinforcement learning.Swarm Intelligence with Python in terms of reinforcement learni
图书封面Titlebook: Reinforcement Learning; With Open AI, Tensor Abhishek Nandy,Manisha Biswas Book 2018 Abhishek Nandy and Manisha Biswas  2018 Reinforcement
描述Master reinforcement learning, a popular area of machine learning, starting with the basics: discover how agents and the environment evolve and then gain a clear picture of how they are inter-related. You’ll then work with theories related to reinforcement learning and see the concepts that build up the reinforcement learning process. .Reinforcement Learning. discusses algorithm implementations important for reinforcement learning, including Markov’s Decision process and Semi Markov Decision process. The next section shows you how to get started with Open AI  before looking at Open AI Gym. You’ll then learn about Swarm Intelligence with Python in terms of reinforcement learning.. .The last part of the book starts with the TensorFlow environment and gives an outline of how reinforcement learning can be applied to TensorFlow. There’s also coverage of Keras, a framework that can be used with reinforcement learning. Finally, you‘ll delve into Google’s Deep Mind and see scenarios where reinforcement learning can be used. .What You‘ll Learn .Absorb the core concepts of the reinforcement learning process.Use advanced topics of deep learning and AI.Work with Open AI Gym, Open AI, and Pytho
出版日期Book 2018
关键词Reinforcement Learning; Artificial Intelligence; Python; TensorFlow; Keras; Deep Learning; Machine Learnin
版次1
doihttps://doi.org/10.1007/978-1-4842-3285-9
isbn_softcover978-1-4842-3284-2
isbn_ebook978-1-4842-3285-9
copyrightAbhishek Nandy and Manisha Biswas 2018
The information of publication is updating

书目名称Reinforcement Learning影响因子(影响力)




书目名称Reinforcement Learning影响因子(影响力)学科排名




书目名称Reinforcement Learning网络公开度




书目名称Reinforcement Learning网络公开度学科排名




书目名称Reinforcement Learning被引频次




书目名称Reinforcement Learning被引频次学科排名




书目名称Reinforcement Learning年度引用




书目名称Reinforcement Learning年度引用学科排名




书目名称Reinforcement Learning读者反馈




书目名称Reinforcement Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:25:12 | 显示全部楼层
发表于 2025-3-22 01:50:30 | 显示全部楼层
发表于 2025-3-22 05:08:13 | 显示全部楼层
发表于 2025-3-22 10:06:27 | 显示全部楼层
rm Intelligence with Python in terms of reinforcement learniMaster reinforcement learning, a popular area of machine learning, starting with the basics: discover how agents and the environment evolve and then gain a clear picture of how they are inter-related. You’ll then work with theories related
发表于 2025-3-22 15:33:13 | 显示全部楼层
Applying Python to Reinforcement Learning,h analysis of Reinforcement Learning. We start off by going through Q learning in terms of Python. Then we describe Swarm intelligence in Python, with an introduction to what exactly Swarm intelligence is. The chapter also covers the Markov decision process (MDP) toolbox.
发表于 2025-3-22 17:39:43 | 显示全部楼层
Book 2018ain a clear picture of how they are inter-related. You’ll then work with theories related to reinforcement learning and see the concepts that build up the reinforcement learning process. .Reinforcement Learning. discusses algorithm implementations important for reinforcement learning, including Mark
发表于 2025-3-22 22:00:46 | 显示全部楼层
http://image.papertrans.cn/r/image/825931.jpg
发表于 2025-3-23 01:34:13 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-3285-9Reinforcement Learning; Artificial Intelligence; Python; TensorFlow; Keras; Deep Learning; Machine Learnin
发表于 2025-3-23 08:43:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-18 01:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表