找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Reinforcement Learning; Optimal Feedback Con Jinna Li,Frank L. Lewis,Jialu Fan Book 2023 The Editor(s) (if applicable) and The Author(s), u

[复制链接]
查看: 34651|回复: 39
发表于 2025-3-21 19:19:27 | 显示全部楼层 |阅读模式
书目名称Reinforcement Learning
副标题Optimal Feedback Con
编辑Jinna Li,Frank L. Lewis,Jialu Fan
视频video
概述Systematic, easy-to-follow introduction of novel ideas in data-driven optimal control.Uses measured data in examples to show how methods really work.Illustrates the practical application of novel algo
丛书名称Advances in Industrial Control
图书封面Titlebook: Reinforcement Learning; Optimal Feedback Con Jinna Li,Frank L. Lewis,Jialu Fan Book 2023 The Editor(s) (if applicable) and The Author(s), u
描述.This book offers a thorough introduction to the basics and scientific and technological innovations involved in the modern study of reinforcement-learning-based feedback control. The authors address a wide variety of systems including work on nonlinear, networked, multi-agent and multi-player systems... ..A concise description of classical reinforcement learning (RL), the basics of optimal control with dynamic programming and network control architectures, and a brief introduction to typical algorithms build the foundation for the remainder of the book. Extensive research on data-driven robust control for nonlinear systems with unknown dynamics and multi-player systems follows. Data-driven optimal control of networked single- and multi-player systems leads readers into the development of novel RL algorithms with increased learning efficiency. The book concludes with a treatment of how these RL algorithms can achieve optimal synchronization policies for multi-agentsystems with unknown model parameters and how game RL can solve problems of optimal operation in various process industries. Illustrative numerical examples and complex process control applications emphasize the realistic
出版日期Book 2023
关键词Reinforcement Learning for Optimal Control; Process Engineering; Adaptive Dynamic Programming; Data-dri
版次1
doihttps://doi.org/10.1007/978-3-031-28394-9
isbn_softcover978-3-031-28396-3
isbn_ebook978-3-031-28394-9Series ISSN 1430-9491 Series E-ISSN 2193-1577
issn_series 1430-9491
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Reinforcement Learning影响因子(影响力)




书目名称Reinforcement Learning影响因子(影响力)学科排名




书目名称Reinforcement Learning网络公开度




书目名称Reinforcement Learning网络公开度学科排名




书目名称Reinforcement Learning被引频次




书目名称Reinforcement Learning被引频次学科排名




书目名称Reinforcement Learning年度引用




书目名称Reinforcement Learning年度引用学科排名




书目名称Reinforcement Learning读者反馈




书目名称Reinforcement Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:16:26 | 显示全部楼层
发表于 2025-3-22 02:45:45 | 显示全部楼层
Jinna Li,Frank L. Lewis,Jialu FanSystematic, easy-to-follow introduction of novel ideas in data-driven optimal control.Uses measured data in examples to show how methods really work.Illustrates the practical application of novel algo
发表于 2025-3-22 05:54:42 | 显示全部楼层
发表于 2025-3-22 11:44:06 | 显示全部楼层
发表于 2025-3-22 14:15:20 | 显示全部楼层
Background on Reinforcement Learning and Optimal Control,ion and contributions of this book. The discussion is preparatory to well handle optimal feedback control problems using the RL technique in subsequent chapters, with strong potentials and benefits for future practical applications, particularly industrial intelligent optimization and control. In ad
发表于 2025-3-22 19:48:24 | 显示全部楼层
Control Using Reinforcement Learning,er systems with a single source of external disturbances. The primary contribution lies in that the Q-learning strategy employed in the proposed algorithm is implemented in an off-policy policy iteration approach other than the on-policy learning. Then, we present a data-driven adaptive dynamic prog
发表于 2025-3-23 00:22:54 | 显示全部楼层
发表于 2025-3-23 03:18:57 | 显示全部楼层
Interleaved Robust Reinforcement Learning,terleaved reinforcement learning algorithm is developed for finding a robust controller of DT affine nonlinear systems subject to matched or unmatched uncertainties. To this end, the robust control problem is converted to the optimal control problem for nominal systems by selecting an appropriate ut
发表于 2025-3-23 09:09:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-9 20:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表