找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ROBOT2022: Fifth Iberian Robotics Conference; Advances in Robotics Danilo Tardioli,Vicente Matellán,Lino Marques Conference proceedings 202

[复制链接]
楼主: 并排一起
发表于 2025-3-30 11:58:53 | 显示全部楼层
Evaluating Cognitive Odour Source Localisation Strategies in Natural Water Streamsfunctions have been proposed to assist in the decision-making process of cognitive strategies, but it is not yet clear which of these information metrics performs better in the OSL process. Additionally, most of these works have only been validated in simulation or in small controllable conditions s
发表于 2025-3-30 13:25:11 | 显示全部楼层
发表于 2025-3-30 19:27:43 | 显示全部楼层
发表于 2025-3-30 22:42:07 | 显示全部楼层
A Novel Odor Source Localization Method via a Deep Neural Network-Based Odor Compassng capacity of common metal oxide semiconductor (MOS) sensors, the OSL robots still lag far behind their biological counterparts. In this paper, we rethink the odor-source direction estimation paradigm of odor compass and propose a deep neural network (DNN) based method to improve both the accuracy
发表于 2025-3-31 04:09:36 | 显示全部楼层
Full-stack S-DOVS: Autonomous Navigation in Complete Real-World Dynamic Scenariosed in a full navigation stack, with a localization system, an obstacle tracker and a global planner. The result is a system that is able to navigate successfully in real-world scenarios, where it may face complex challenges as dynamic obstacles or replanning. The final work is exhaustively tested in simulation and in a ground robot.
发表于 2025-3-31 06:26:35 | 显示全部楼层
Artificial Stupidity in Robotics: Something Unwanted or Somehow Useful?“Is artificial stupidity something that we must avoid or, on the contrary, something that can be useful for us?” It addresses the definition of the artificial stupidity problem and analyzes some potential methods to solve it.
发表于 2025-3-31 12:48:08 | 显示全部楼层
发表于 2025-3-31 15:27:11 | 显示全部楼层
Learning from the Past: Sequential Deep Learning for Gas Distribution Mappingased on a multiple time step input from a sensor network. We propose a novel hybrid convolutional LSTM - transpose convolutional structure that we train with synthetic gas distribution data. Our results show that learning the spatial and temporal correlation of gas plume patterns outperforms a non-sequential neural network model.
发表于 2025-3-31 17:50:16 | 显示全部楼层
发表于 2025-3-31 23:52:50 | 显示全部楼层
Christyan Cruz Ulloa,Miguel Garcia,Jaime del Cerro,Antonio Barrientosren zurück.Die Neuauflage trägt den umfangreichen Änderungen. "...In seiner umfassenden, exakten, klaren und verständlichen Darstellung stellt dieses Buch einen fast einmaligen und unentbehrlichen Behelf für den Ingenieur in der elektrischen Energietechnik dar, der sich mit der Projektierung, dem Ba
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-17 23:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表