找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Quasi-Stationary Distributions; Markov Chains, Diffu Pierre Collet,Servet Martínez,Jaime San Martín Book 2013 Springer-Verlag Berlin Heidel

[复制链接]
楼主: Disperse
发表于 2025-3-25 04:07:52 | 显示全部楼层
Pierre Collet,Servet Martínez,Jaime San Martíndivision of labour. Economic integration — the division of labour beyond the borders of individual states and the consequent extension of foreign trade — is essential if the technical and economic parameters of production in a broad range of industries are to be improved: an increase in the internat
发表于 2025-3-25 09:31:51 | 显示全部楼层
发表于 2025-3-25 12:31:14 | 显示全部楼层
ns to be established by an . system of balances — in precise form for the most significant goods and in a general fashion for aggregate flows. Each detailed balance exhibits availabilities and major requirements. This long-established planning practice can be described in the well-known equation, th
发表于 2025-3-25 17:08:16 | 显示全部楼层
Introduction,process is said to be killed when it hits the trap and it is assumed that this happens almost surely. We investigate the behavior of the process before being killed, more precisely we study what happens when one conditions the process to survive for a long time.
发表于 2025-3-25 21:48:49 | 显示全部楼层
Quasi-Stationary Distributions: General Results, distributions (QSDs). In Theorem 2.2 of Sect. ., we show that starting from a QSD the killing time is exponentially distributed, and in Theorem 2.6 of Sect. ., we show that the killing time and the state of killing are independent random variables. In Theorem 2.11 of Sect. ., we give a theorem of e
发表于 2025-3-26 03:01:09 | 显示全部楼层
Markov Chains on Finite Spaces,the normalized left Perron–Frobenius eigenvector of the jump rates matrix restricted to the allowed states. The right eigenvector is shown to be the asymptotic ratio of survival probabilities. In Sect. ., it is proved that the trajectories that survive forever form a Markov chain which is an .-proce
发表于 2025-3-26 05:54:21 | 显示全部楼层
发表于 2025-3-26 10:32:36 | 显示全部楼层
发表于 2025-3-26 14:07:42 | 显示全部楼层
发表于 2025-3-26 18:22:28 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-19 04:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表