找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Quantum Machine Learning: An Applied Approach; The Theory and Appli Santanu Ganguly Book 2021 Santanu Ganguly 2021 Quantum Mechanics.machin

[复制链接]
查看: 32752|回复: 43
发表于 2025-3-21 19:16:16 | 显示全部楼层 |阅读模式
书目名称Quantum Machine Learning: An Applied Approach
副标题The Theory and Appli
编辑Santanu Ganguly
视频video
概述The first book related to hands-on aspects of quantum machine learning.Optimized for self-study without jargon and centered on easy reading.Code examples utilizing open source libraries and languages
图书封面Titlebook: Quantum Machine Learning: An Applied Approach; The Theory and Appli Santanu Ganguly Book 2021 Santanu Ganguly 2021 Quantum Mechanics.machin
描述.Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research..The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learning, where concepts of classical information technology meet the power of physics. Subsequent chapters follow a systematic deep dive into various quantum machine learning algorithms, quantum optimization, applications of advanced QML algorithms (quantum k-means, quantum k-medians, quantum neural networks, etc.), qubit state preparation for specific QML algorithms, inference, polynomial Hamiltonian simulation, and more, finishing with advanced and up-to-date research areas such as quantum walks, QML via Tensor Networks, and QBoost..Hands-on exercises from open source libraries regularly used today in industry and research are included, such as Qiskit, Rigetti‘s Forest, D-Wave‘s dOcean, Google‘s Cirq and brand new TensorFlow Quantum, and Xanadu‘s PennyLane, accompanied by guided implementation instructions. Wherever applicable, the book also shares v
出版日期Book 2021
关键词Quantum Mechanics; machine learning; quantum computing; artificial intelligence; Grover’s search algorit
版次1
doihttps://doi.org/10.1007/978-1-4842-7098-1
isbn_softcover978-1-4842-7097-4
isbn_ebook978-1-4842-7098-1
copyrightSantanu Ganguly 2021
The information of publication is updating

书目名称Quantum Machine Learning: An Applied Approach影响因子(影响力)




书目名称Quantum Machine Learning: An Applied Approach影响因子(影响力)学科排名




书目名称Quantum Machine Learning: An Applied Approach网络公开度




书目名称Quantum Machine Learning: An Applied Approach网络公开度学科排名




书目名称Quantum Machine Learning: An Applied Approach被引频次




书目名称Quantum Machine Learning: An Applied Approach被引频次学科排名




书目名称Quantum Machine Learning: An Applied Approach年度引用




书目名称Quantum Machine Learning: An Applied Approach年度引用学科排名




书目名称Quantum Machine Learning: An Applied Approach读者反馈




书目名称Quantum Machine Learning: An Applied Approach读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:38:47 | 显示全部楼层
发表于 2025-3-22 04:12:37 | 显示全部楼层
Rise of the Quantum Machines: Fundamentals,ways been a champion of thoughts leading toward computers leveraging laws of quantum mechanics when he stated, “There’s plenty of room at the bottom” and, “Nature isn’t classical. If you want to make a simulation of nature, you’d better make it quantum mechanical,” which means to properly simulate quantum systems, you must use a quantum computer.
发表于 2025-3-22 05:43:57 | 显示全部楼层
发表于 2025-3-22 12:41:08 | 显示全部楼层
发表于 2025-3-22 13:07:35 | 显示全部楼层
发表于 2025-3-22 18:49:54 | 显示全部楼层
发表于 2025-3-22 22:46:25 | 显示全部楼层
发表于 2025-3-23 01:47:57 | 显示全部楼层
发表于 2025-3-23 09:14:42 | 显示全部楼层
Deep Quantum Learning,ted annealing. Physics also offers the ., which, in its quantum form, is .. Hence, physical machines can solve the mathematical problem of optimization, including constraints—a property that can be extended to using quantum systems to treat classical and quantum data.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 03:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表