找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Quantitative Information Fusion for Hydrological Sciences; Xing Cai,T. -C. Jim Yeh Book 2008 Springer-Verlag Berlin Heidelberg 2008 Ground

[复制链接]
查看: 11204|回复: 37
发表于 2025-3-21 18:04:59 | 显示全部楼层 |阅读模式
书目名称Quantitative Information Fusion for Hydrological Sciences
编辑Xing Cai,T. -C. Jim Yeh
视频video
概述edited overview about quantitative information fusion in hydrology.Includes supplementary material:
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Quantitative Information Fusion for Hydrological Sciences;  Xing Cai,T. -C. Jim Yeh Book 2008 Springer-Verlag Berlin Heidelberg 2008 Ground
描述.In a rapidly evolving world of knowledge and technology, do you ever wonder how hydrology is catching up? This book takes the angle of computational hydrology and envisions one of the future directions, namely, quantitative integration of high-quality hydrologic field data with geologic, hydrologic, chemical, atmospheric, and biological information to characterize and predict natural systems in hydrological sciences...Intelligent computation and information fusion are the key words. The aim is to provide both established scientists and graduate students with a summary of recent developments in this topic. The chapters of this edited volume cover some of the most important ingredients for quantitative hydrological information fusion, including data fusion techniques, interactive computational environments, and supporting mathematical and numerical methods. Real-life applications of hydrological information fusion are also addressed..
出版日期Book 2008
关键词Groundwater; Hydrological Sciences; Quantitative Information Fusion; hydrogeology; hydrology; modeling; nu
版次1
doihttps://doi.org/10.1007/978-3-540-75384-1
isbn_softcover978-3-642-09461-3
isbn_ebook978-3-540-75384-1Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

书目名称Quantitative Information Fusion for Hydrological Sciences影响因子(影响力)




书目名称Quantitative Information Fusion for Hydrological Sciences影响因子(影响力)学科排名




书目名称Quantitative Information Fusion for Hydrological Sciences网络公开度




书目名称Quantitative Information Fusion for Hydrological Sciences网络公开度学科排名




书目名称Quantitative Information Fusion for Hydrological Sciences被引频次




书目名称Quantitative Information Fusion for Hydrological Sciences被引频次学科排名




书目名称Quantitative Information Fusion for Hydrological Sciences年度引用




书目名称Quantitative Information Fusion for Hydrological Sciences年度引用学科排名




书目名称Quantitative Information Fusion for Hydrological Sciences读者反馈




书目名称Quantitative Information Fusion for Hydrological Sciences读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:54:36 | 显示全部楼层
Book 2008hydrology and envisions one of the future directions, namely, quantitative integration of high-quality hydrologic field data with geologic, hydrologic, chemical, atmospheric, and biological information to characterize and predict natural systems in hydrological sciences...Intelligent computation and
发表于 2025-3-22 00:31:14 | 显示全部楼层
发表于 2025-3-22 08:03:55 | 显示全部楼层
Integrated Methods for Urban Groundwater Management Considering Subsurface Heterogeneity,owledge of groundwater flow regimes could lead to reducing and minimizing, as far as possible, the negative impacts throughout the construction phases, and to developing sustainable groundwater use and management tools.
发表于 2025-3-22 11:59:21 | 显示全部楼层
Data Fusion Methods for Integrating Data-driven Hydrological Models,g, neural networks, fuzzy logic, M5 model trees and instance-based learning. The results show that the data fusion approaches produce better performing models compared to the individual models on their own. The potential of this approach is demonstrated yet remains largely unexplored in real-time hydrological forecasting.
发表于 2025-3-22 15:54:11 | 显示全部楼层
Data Fusion Methods for Integrating Data-driven Hydrological Models,emonstrated using flow forecasting models from the River Ouse catchment in the UK for a lead time of 6 hours. These approaches include simple averaging, neural networks, fuzzy logic, M5 model trees and instance-based learning. The results show that the data fusion approaches produce better performin
发表于 2025-3-22 20:47:13 | 显示全部楼层
A New Paradigm for Groundwater Modeling,fic computing to be real-time interactive with the modelers being dynamically-engaged and in full control throughout the computational process. The report stressed: scientists not only want to solve equations or analyze data that results from computing, they also want to interpret what is happening
发表于 2025-3-22 23:06:49 | 显示全部楼层
发表于 2025-3-23 02:17:13 | 显示全部楼层
发表于 2025-3-23 07:46:06 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 08:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表