书目名称 | Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen | 编辑 | Daniel Haake | 视频video | http://file.papertrans.cn/760/759800/759800.mp4 | 丛书名称 | BestMasters | 图书封面 |  | 描述 | Das Buch beschäftigt sich mit der Möglichkeit der Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Verfahren. Die Analyse beschränkt sich auf die Fragestellung, ob nach einem erfolgten Wohnungseinbruch mit einer Nachfolgetat, den sog. Near-Repeats, zu rechnen ist. Dabei wird untersucht, welche Faktoren zu guten Prognoseergebnissen beitragen. Zur Verfügung stehen Daten zu Wohnungseinbrüchen aus Baden-Württemberg aus den Jahren 2010 bis 2017. Ergänzt werden die polizeilichen Daten um geografische Daten, die den Tatort beschreiben. Hiermit wird geprüft, ob kriminalgeografische Faktoren gute Indikatoren zur Prognose von Wohnungseinbrüchen, genauer gesagt Near-Repeats, darstellen. Als Machine-Learning-Verfahren kommen die Verfahren Random Forest, XGBoost, Support Vector Machines, Neuronale Netze und ein Soft-Voting der Modelle zum Einsatz. Mit Hilfe dieser Verfahren kann eine Präzision der Prognosen von über 60% erreicht werden. Es wird außerdem erstmalig gezeigt, dass auch Prognosen für den ländlichen Raum möglich sind.. | 出版日期 | Book 2022 | 关键词 | Artificial Intelligence; Machine Learning; Data Science; Polizei; Kriminologie; Predictive Policing | 版次 | 1 | doi | https://doi.org/10.1007/978-3-658-37660-4 | isbn_softcover | 978-3-658-37659-8 | isbn_ebook | 978-3-658-37660-4Series ISSN 2625-3577 Series E-ISSN 2625-3615 | issn_series | 2625-3577 | copyright | Der/die Herausgeber bzw. der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden Gmb |
The information of publication is updating
|
|