找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Probabilistic Graphical Models; Principles and Appli Luis Enrique Sucar Textbook 20151st edition Springer-Verlag London 2015 Bayesian Class

[复制链接]
查看: 43142|回复: 35
发表于 2025-3-21 18:40:31 | 显示全部楼层 |阅读模式
书目名称Probabilistic Graphical Models
副标题Principles and Appli
编辑Luis Enrique Sucar
视频videohttp://file.papertrans.cn/757/756796/756796.mp4
概述Includes exercises, suggestions for research projects, and example applications throughout the book.Presents the main classes of PGMs under a single, unified framework.Covers both the fundamental aspe
丛书名称Advances in Computer Vision and Pattern Recognition
图书封面Titlebook: Probabilistic Graphical Models; Principles and Appli Luis Enrique Sucar Textbook 20151st edition Springer-Verlag London 2015 Bayesian Class
描述This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Features: presents a unified framework encompassing all of the main classes of PGMs; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter.
出版日期Textbook 20151st edition
关键词Bayesian Classifiers; Bayesian Networks; Decision Networks; Hidden Markov Models; Influence Diagrams; Lea
版次1
doihttps://doi.org/10.1007/978-1-4471-6699-3
isbn_softcover978-1-4471-7054-9
isbn_ebook978-1-4471-6699-3Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer-Verlag London 2015
The information of publication is updating

书目名称Probabilistic Graphical Models影响因子(影响力)




书目名称Probabilistic Graphical Models影响因子(影响力)学科排名




书目名称Probabilistic Graphical Models网络公开度




书目名称Probabilistic Graphical Models网络公开度学科排名




书目名称Probabilistic Graphical Models被引频次




书目名称Probabilistic Graphical Models被引频次学科排名




书目名称Probabilistic Graphical Models年度引用




书目名称Probabilistic Graphical Models年度引用学科排名




书目名称Probabilistic Graphical Models读者反馈




书目名称Probabilistic Graphical Models读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:29:33 | 显示全部楼层
2191-6586 rs, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter.978-1-4471-7054-9978-1-4471-6699-3Series ISSN 2191-6586 Series E-ISSN 2191-6594
发表于 2025-3-22 04:26:12 | 显示全部楼层
发表于 2025-3-22 07:01:38 | 显示全部楼层
发表于 2025-3-22 09:45:33 | 显示全部楼层
发表于 2025-3-22 15:50:13 | 显示全部楼层
Luis Enrique Sucarprocess. The conclusion offers a summary of the previous outcomes and moreover, a discussion of the research questions. Similar to the CEECs before their entrance into the EU, the periphery countries need to find a direction to pursue during the next 10–15 years. Budgetary savings are inevitable; ne
发表于 2025-3-22 19:29:24 | 显示全部楼层
发表于 2025-3-23 00:39:03 | 显示全部楼层
Luis Enrique Sucars and sophistication of any of these application mapping steps make the mapping of computations to these architectures an increasingly daunting process. It is thus widely believed that automatic compilation from high-level programming languages is the key to the success of recon?gurable computing. T
发表于 2025-3-23 04:25:02 | 显示全部楼层
发表于 2025-3-23 05:54:32 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-3 14:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表