书目名称 | Probabilistic Databases | 编辑 | Dan Suciu,Dan Olteanu,Christoph Koch | 视频video | | 丛书名称 | Synthesis Lectures on Data Management | 图书封面 |  | 描述 | Probabilistic databases are databases where the value of some attributes or the presence of some records are uncertain and known only with some probability. Applications in many areas such as information extraction, RFID and scientific data management, data cleaning, data integration, and financial risk assessment produce large volumes of uncertain data, which are best modeled and processed by a probabilistic database. This book presents the state of the art in representation formalisms and query processing techniques for probabilistic data. It starts by discussing the basic principles for representing large probabilistic databases, by decomposing them into tuple-independent tables, block-independent-disjoint tables, or U-databases. Then it discusses two classes of techniques for query evaluation on probabilistic databases. In extensional query evaluation, the entire probabilistic inference can be pushed into the database engine and, therefore, processed as effectively as the evaluation of standard SQL queries. The relational queries that can be evaluated this way are called safe queries. In intensional query evaluation, the probabilistic inference is performed over a propositional | 出版日期 | Book 2011 | 版次 | 1 | doi | https://doi.org/10.1007/978-3-031-01879-4 | isbn_softcover | 978-3-031-00751-4 | isbn_ebook | 978-3-031-01879-4Series ISSN 2153-5418 Series E-ISSN 2153-5426 | issn_series | 2153-5418 | copyright | Springer Nature Switzerland AG 2011 |
The information of publication is updating
|
|