找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Parallel Problem Solving from Nature, PPSN XI; 11th International C Robert Schaefer,Carlos Cotta,Günter Rudolph Conference proceedings 2010

[复制链接]
查看: 11777|回复: 35
发表于 2025-3-21 19:25:48 | 显示全部楼层 |阅读模式
书目名称Parallel Problem Solving from Nature, PPSN XI
副标题11th International C
编辑Robert Schaefer,Carlos Cotta,Günter Rudolph
视频video
概述Up to date results.Fast conference proceedings.State-of-the-art report
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Parallel Problem Solving from Nature, PPSN XI; 11th International C Robert Schaefer,Carlos Cotta,Günter Rudolph Conference proceedings 2010
出版日期Conference proceedings 2010
关键词algorithms; data mining; evolution; evolutionary algorithm; evolutionary computation; genetic algorithms;
版次1
doihttps://doi.org/10.1007/978-3-642-15844-5
isbn_softcover978-3-642-15843-8
isbn_ebook978-3-642-15844-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

书目名称Parallel Problem Solving from Nature, PPSN XI影响因子(影响力)




书目名称Parallel Problem Solving from Nature, PPSN XI影响因子(影响力)学科排名




书目名称Parallel Problem Solving from Nature, PPSN XI网络公开度




书目名称Parallel Problem Solving from Nature, PPSN XI网络公开度学科排名




书目名称Parallel Problem Solving from Nature, PPSN XI被引频次




书目名称Parallel Problem Solving from Nature, PPSN XI被引频次学科排名




书目名称Parallel Problem Solving from Nature, PPSN XI年度引用




书目名称Parallel Problem Solving from Nature, PPSN XI年度引用学科排名




书目名称Parallel Problem Solving from Nature, PPSN XI读者反馈




书目名称Parallel Problem Solving from Nature, PPSN XI读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:51:55 | 显示全部楼层
发表于 2025-3-22 01:31:47 | 显示全部楼层
Benchmarking Evolutionary Algorithms: Towards Exploratory Landscape Analysis which can be used to analyse the raw data of a benchmark experiment and derive some insight regarding the answers to these questions. We employ the presented methods to analyse the BBOB’09 benchmark results and present some initial findings.
发表于 2025-3-22 06:03:08 | 显示全部楼层
More Effective Crossover Operators for the All-Pairs Shortest Path Problemis work, we study two variants of the algorithm. These are based on two central concepts in recombination, . and .. We show that repairing infeasible offspring leads to an improved expected optimization time of .. Furthermore, we prove that choosing parents that guarantee feasible offspring results in an optimization time of ..
发表于 2025-3-22 12:17:18 | 显示全部楼层
发表于 2025-3-22 13:14:17 | 显示全部楼层
Optimizing Monotone Functions Can Be Difficult that the (1+1) EA with overwhelming probability does not find the optimum within 2. iterations. This is the first time that we observe that a constant factor change of the mutation probability changes the run-time by more than constant factors.
发表于 2025-3-22 18:42:09 | 显示全部楼层
发表于 2025-3-22 23:36:20 | 显示全部楼层
Towards Analyzing Recombination Operators in Evolutionary Searchy of our approach is the . which compares two Markov chains for the first hit of the target. As an illustration, we analyze some recombination operators in evolutionary search on the LeadingOnes problem using the proposed approach. The analysis identifies some insight on the choice of recombination operators, which is then verified in experiments.
发表于 2025-3-23 01:30:35 | 显示全部楼层
Drift Analysis with Tail Boundsns holds with high probability (and not just in expectation). Similar improvements are obtained for other classical problems in the evolutionary algorithms literature, for example computing minimum spanning trees, finding single-source shortest paths, and finding Eulerian cycles.
发表于 2025-3-23 08:32:03 | 显示全部楼层
Süntje Böttcher,Benjamin Doerr,Frank Neumann Leser, wie man solche Aufgaben vom ersten Ansatz bis zum Ergebnis durchrechnet. Schwerpunkt sind die im Lehrbuch "Mathematik für Ingenieure" desselben Autors angegebenen Übungsaufgaben.978-3-540-69075-7Series ISSN 0937-7433 Series E-ISSN 2512-5214
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 04:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表