找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Operator and Matrix Theory, Function Spaces, and Applications; International Worksh Marek Ptak,Hugo J. Woerdeman,Michał Wojtylak Conference

[复制链接]
楼主: Intermediary
发表于 2025-3-26 22:48:37 | 显示全部楼层
发表于 2025-3-27 04:01:30 | 显示全部楼层
发表于 2025-3-27 06:21:08 | 显示全部楼层
发表于 2025-3-27 12:38:07 | 显示全部楼层
发表于 2025-3-27 13:36:19 | 显示全部楼层
,Hilbert Transform in the Cartwright–de Branges Space, note, we present a formula for the Hilbert transform of ., where . belongs to the Cartwright–de Branges space associated with the de Branges function .. The formula implies several other known results.
发表于 2025-3-27 19:52:48 | 显示全部楼层
A Note on the Dilation of a Certain Family of Tetrablock Contractions,t disc (only the first operator of the tetrablock contraction depends on the parameter). The dilation space is the same for any member of the family. Explicit dilation for the adjoint tetrablock contraction . for every member of the family mentioned above is constructed as well. This example is impo
发表于 2025-3-28 00:24:52 | 显示全部楼层
发表于 2025-3-28 02:53:12 | 显示全部楼层
发表于 2025-3-28 08:53:36 | 显示全部楼层
On Non-commutative Spreadability, These semigroups are strictly related to spreadability, as the latter can be directly stated in terms of invariance with respect to their action..We are mainly focused on spreadable, Boolean, monotone, and .-deformed processes. In particular, we give a suitable version of the Ryll-Nardzewski Theore
发表于 2025-3-28 11:44:16 | 显示全部楼层
On the Berger-Coburn Phenomenon, when ., that is, for a bounded symbol ., if . is a compact or Schatten class operator, then so is .. More recently J. Xia has provided a simple example that shows that there is no Berger-Coburn phenomenon for trace class Hankel operators on the classical Fock space .. Using Xia’s example, we show t
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-7 04:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表