用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics; Wolfgang Arendt,Ralph Chill,Yuri Tomilov Conference

[复制链接]
楼主: 教条
发表于 2025-3-28 15:09:14 | 显示全部楼层
Lattice Dilations of Bistochastic Semigroups,An alternative proof is given for Fendler’s dilation result for bistochastic semigroups on ., including the result for . = 1 as well as minimality and uniqueness of the dilation.
发表于 2025-3-28 21:40:10 | 显示全部楼层
发表于 2025-3-29 01:12:11 | 显示全部楼层
978-3-319-79252-1Springer International Publishing Switzerland 2015
发表于 2025-3-29 05:55:27 | 显示全部楼层
Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics978-3-319-18494-4Series ISSN 0255-0156 Series E-ISSN 2296-4878
发表于 2025-3-29 08:34:57 | 显示全部楼层
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/o/image/702323.jpg
发表于 2025-3-29 12:37:11 | 显示全部楼层
发表于 2025-3-29 16:16:42 | 显示全部楼层
,Global Existence Results for the Navier–Stokes Equations in the Rotational Framework in Fourier–Besque, global mild solution provided the initial data is small with respect to the norm of the Fourier–Besov space ., where .. In the two-dimensional setting, a unique, global mild solution to this set of equations exists for . initial data .
发表于 2025-3-29 20:54:01 | 显示全部楼层
,Generation of Subordinated Holomorphic Semigroups via Yosida’s Theorem,. is the generator of a holomorphic C.-semigroup on a Banach space, bounded on .. Such estimates are of value, in particular, in approximation theory of operator semigroups. As a corollary, weobtain a new proof of the fact that . generates a holomorphic semigroup whenever −. does, established recently in [8] by a different approach.
发表于 2025-3-30 01:42:58 | 显示全部楼层
发表于 2025-3-30 07:35:41 | 显示全部楼层
0255-0156 ent experts in the field of modern semigroup theory, harmonic analysis, complex analysis and mathematical physics, and to present the lively interactions between all of those areas and beyond. In addition, the 978-3-319-79252-1978-3-319-18494-4Series ISSN 0255-0156 Series E-ISSN 2296-4878
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-19 13:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表