找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Online Optimization of Large Scale Systems; Martin Grötschel,Sven O. Krumke,Jörg Rambau Book 2001 Springer-Verlag Berlin Heidelberg 2001 O

[复制链接]
查看: 36834|回复: 57
发表于 2025-3-21 17:02:44 | 显示全部楼层 |阅读模式
书目名称Online Optimization of Large Scale Systems
编辑Martin Grötschel,Sven O. Krumke,Jörg Rambau
视频video
概述applications-oriented book on all major aspects of optimization.Includes supplementary material:
图书封面Titlebook: Online Optimization of Large Scale Systems;  Martin Grötschel,Sven O. Krumke,Jörg Rambau Book 2001 Springer-Verlag Berlin Heidelberg 2001 O
描述In its thousands of years of history, mathematics has made an extraordinary ca­ reer. It started from rules for bookkeeping and computation of areas to become the language of science. Its potential for decision support was fully recognized in the twentieth century only, vitally aided by the evolution of computing and communi­ cation technology. Mathematical optimization, in particular, has developed into a powerful machinery to help planners. Whether costs are to be reduced, profits to be maximized, or scarce resources to be used wisely, optimization methods are available to guide decision making. Opti­ mization is particularly strong if precise models of real phenomena and data of high quality are at hand - often yielding reliable automated control and decision proce­ dures. But what, if the models are soft and not all data are around? Can mathematics help as well? This book addresses such issues, e. g. , problems of the following type: - An elevator cannot know all transportation requests in advance. In which order should it serve the passengers? - Wing profiles of aircrafts influence the fuel consumption. Is it possible to con­ tinuously adapt the shape of a wing during the flig
出版日期Book 2001
关键词Online optimizaion; algorithm; algorithms; chemical engineering; combinatorial optimization; differential
版次1
doihttps://doi.org/10.1007/978-3-662-04331-8
isbn_softcover978-3-642-07633-6
isbn_ebook978-3-662-04331-8
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

书目名称Online Optimization of Large Scale Systems影响因子(影响力)




书目名称Online Optimization of Large Scale Systems影响因子(影响力)学科排名




书目名称Online Optimization of Large Scale Systems网络公开度




书目名称Online Optimization of Large Scale Systems网络公开度学科排名




书目名称Online Optimization of Large Scale Systems被引频次




书目名称Online Optimization of Large Scale Systems被引频次学科排名




书目名称Online Optimization of Large Scale Systems年度引用




书目名称Online Optimization of Large Scale Systems年度引用学科排名




书目名称Online Optimization of Large Scale Systems读者反馈




书目名称Online Optimization of Large Scale Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:38:09 | 显示全部楼层
https://doi.org/10.1007/978-3-662-04331-8Online optimizaion; algorithm; algorithms; chemical engineering; combinatorial optimization; differential
发表于 2025-3-22 01:55:58 | 显示全部楼层
Martin Grötschel,Sven O. Krumke,Jörg Rambauapplications-oriented book on all major aspects of optimization.Includes supplementary material:
发表于 2025-3-22 07:37:47 | 显示全部楼层
Optimal Control Problems with a First Order PDE System — Necessary and Sufficient Optimality Conditiegrals and first order partial differential equations. Second order sufficiency conditions are illustrated by the problem of minimal k-energy in an n-dimensional space. It can be shown by the developed theory that a certain cone has strong minimizing properties.
发表于 2025-3-22 11:23:27 | 显示全部楼层
978-3-642-07633-6Springer-Verlag Berlin Heidelberg 2001
发表于 2025-3-22 14:24:46 | 显示全部楼层
发表于 2025-3-22 18:25:19 | 显示全部楼层
发表于 2025-3-22 23:39:22 | 显示全部楼层
发表于 2025-3-23 01:41:21 | 显示全部楼层
Stefan Seelecke,Christof Büskens,Ingo Müller,Jürgen Sprekelsto generate random numbers following the posterior distribution and perform integration calculations based on their frequency. In this chapter, we will discuss Markov Chain Monte Carlo (MCMC) methods, which generate random numbers following the posterior distribution using Markov chains. Bayesian th
发表于 2025-3-23 09:36:41 | 显示全部楼层
Christof Büskensto generate random numbers following the posterior distribution and perform integration calculations based on their frequency. In this chapter, we will discuss Markov Chain Monte Carlo (MCMC) methods, which generate random numbers following the posterior distribution using Markov chains. Bayesian th
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-4 01:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表