找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: On Global Univalence Theorems; T. Parthasarathy Book 1983 Springer-Verlag Berlin Heidelberg 1983 Differenzierbare Abbildung.Finite.Funktio

[复制链接]
楼主: Fruition
发表于 2025-3-28 17:45:01 | 显示全部楼层
发表于 2025-3-28 18:56:53 | 显示全部楼层
发表于 2025-3-29 00:19:44 | 显示全部楼层
发表于 2025-3-29 06:00:01 | 显示全部楼层
Fundamental global univalence results of Gale-Nikaido-Inada,o the problem under consideration. One approach places topological assumptions on the map and the other places further conditions on the Jacobian matrices. We will study the former in the next chapter and the latter in the present chapter.
发表于 2025-3-29 08:43:16 | 显示全部楼层
Global univalent results in R2 and R3, assumption that the diagonal entries are identically zero will imply that F is one-one in any open convex region in R.-this result supplements the result obtained by Gale and Nikaido. We can weaken our assumptions in rectangular regions in R. using Garcia-Zangwill‘s result given in the previous chapter.
发表于 2025-3-29 15:10:24 | 显示全部楼层
发表于 2025-3-29 18:34:14 | 显示全部楼层
Assorted applications of univalence mapping results,distribution is infinitely divisible. In this situation weak N-matrices play an important role. There are various other applications (for example to nonlinear net-work theory) but we will not attempt to exhaust all of them for lack of time and space. [We have already seen a nice application of univalent results in stability theory in chapter VII].
发表于 2025-3-29 22:02:54 | 显示全部楼层
Global homeomorphisms between finite dimensional spaces,to More and Rheinboldt and this result will then be used to prove Gale-Nikaido‘s theorem under weaker assumptions. In the last section we will prove a result due to McAuley for light open mappings. We will end this chapter with an old conjecture of Whyburn.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-31 23:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表