找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th

[复制链接]
楼主: radionuclides
发表于 2025-3-25 05:27:38 | 显示全部楼层
发表于 2025-3-25 11:03:23 | 显示全部楼层
Enhanced Nominal Compound Chain Extraction with Boundary and Chain Informationnsatisfying performance of nominal compound chain extraction due to the incorrect identification of nominal compound boundary and the clustering errors. In this paper, we propose a joint model for the NCCE task. For document representation, a multi-head attention approach is adopted to learn the con
发表于 2025-3-25 13:08:33 | 显示全部楼层
发表于 2025-3-25 16:57:17 | 显示全部楼层
Overview of the NLPCC 2024 Shared Task on Chinese Metaphor Generationd Chinese Computing (NLPCC 2024). The goal of this shared task is to generate Chinese metaphors using machine learning techniques and effectively identifying basic components of metaphorical sentences. It is divided into two subtasks: 1) Metaphor Generation, which involves creating a metaphor from a
发表于 2025-3-25 20:01:17 | 显示全部楼层
ACTOR: Advancing Argument Components Identification Through In-Context Learning and Proximity Informntative expression. The task of identifying argument components aids students in understanding the structure of argumentative essays and assists teachers in evaluating students’ proficiency in scientific argument mining. However, existing research lacks a detailed classification of argument types. T
发表于 2025-3-26 02:15:28 | 显示全部楼层
Improving Inference via Rich Path Information for Dialogue Relation Extractiondirect associations between inter-sentence entity pairs and the lack of path information makes identifying inter-sentence entity pair relations challenging. To address this issue, we proposes an effective inference model that constructs an entity co-occurrence graph of dialogue documents to model in
发表于 2025-3-26 08:19:10 | 显示全部楼层
发表于 2025-3-26 10:41:03 | 显示全部楼层
A Cross-Modal Correlation Fusion Network for Emotion Recognition in Conversationsearning Network (MCRLN) mitigates the difficulty in categorizing tail emotions by combining supervised contrastive learning and multimodal data augmentation. Experimental results on the IEMOCAP and MELD datasets demonstrate the effectiveness and superiority of our proposed CMCFN model.
发表于 2025-3-26 15:36:43 | 显示全部楼层
发表于 2025-3-26 17:39:20 | 显示全部楼层
ACTOR: Advancing Argument Components Identification Through In-Context Learning and Proximity Informf.amework .. We employ a proximity information awareness (PIA) strategy to provide the model with more relevant information and use the in-context learning (ICL) method to offer pertinent reference examples. Experimental results indicate that our method is competitive in the argument component identification task.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-23 11:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表