找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerische Methoden der Approximationstheorie; Band 2 L. Collatz,G. Meinardu Book 1975 Springer Basel AG 1975 Approximationstheorie.Differe

[复制链接]
楼主: Stenosis
发表于 2025-3-25 05:08:50 | 显示全部楼层
发表于 2025-3-25 09:17:20 | 显示全部楼层
A Method for the Numerical Computation of Best ,,-Approximations of Continuous Functions,hed an algorithm for the computation of such best approximations. However, Usow succeeded to prove the convergence of his algorithm only for conditions on . and on {....} which are fairly restrictiv and difficult to verify.
发表于 2025-3-25 13:47:55 | 显示全部楼层
发表于 2025-3-25 18:51:27 | 显示全部楼层
发表于 2025-3-25 21:20:03 | 显示全部楼层
Allgemeine Einschrittverfahren,ple for the construction of classical Runge-Kutta-procedures but also the possibility to put physical a-priori-knowledge about the solution into the procedure. Besides this, arbitrary order of accuracy may be reached without difficulties.
发表于 2025-3-26 01:08:05 | 显示全部楼层
,Zur Konstruktion einer Minimallösung bei Linearer Simultanapproximation, .:B → . sei eine oberhalbstetige und .:B → . eine unterhalbstetige Funktion mit .(x) ≥ . für alle .. Wir suchen ein . ∈ ., das die Zahl. bezüglich . minimiert. Dabei verstehen wir unter ∥ • ∥ die Tschebyscheff-Norm und setzen
发表于 2025-3-26 07:11:15 | 显示全部楼层
发表于 2025-3-26 08:31:52 | 显示全部楼层
Allgemeine Einschrittverfahren,rature-formula. Then the right-hand-side of the differential equation has to be evaluated for some unknown values of the solution of the differential equation. This may be done by three various methods, called: recurrent quadratures, extrapolation, Taylor-series-expansions. Each of these possibiliti
发表于 2025-3-26 14:42:37 | 显示全部楼层
发表于 2025-3-26 16:50:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 19:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表