找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Analysis for Statisticians; Kenneth Lange Textbook 19991st edition Springer Science+Business Media New York 1999 Markov chain Mo

[复制链接]
查看: 27487|回复: 35
发表于 2025-3-21 18:50:32 | 显示全部楼层 |阅读模式
书目名称Numerical Analysis for Statisticians
编辑Kenneth Lange
视频video
丛书名称Statistics and Computing
图书封面Titlebook: Numerical Analysis for Statisticians;  Kenneth Lange Textbook 19991st edition Springer Science+Business Media New York 1999 Markov chain Mo
描述This book, like many books, was born in frustration. When in the fall of 1994 I set out to teach a second course in computational statistics to d- toral students at the University of Michigan, none of the existing texts seemed exactly right. On the one hand, the many decent, even inspiring, books on elementary computational statistics stress the nuts and bolts of using packaged programs and emphasize model interpretation more than numerical analysis. On the other hand, the many theoretical texts in - merical analysis almost entirely neglect the issues of most importance to statisticians. TheclosestbooktomyidealwastheclassicaltextofKennedy and Gentle [2]. More than a decade and a half after its publication, this book still has many valuable lessons to teach statisticians. However, upon re?ecting on the rapid evolution of computational statistics, I decided that the time was ripe for an update. The book you see before you represents a biased selection of those topics in theoretical numerical analysis most relevant to statistics. By intent this book is not a compendium of tried and trusted algorithms, is not a c- sumer’s guide to existing statistical software, and is not an exposition
出版日期Textbook 19991st edition
关键词Markov chain Monte Carlo; Newton‘s method; STATISTICA; algorithms; expectation–maximization algorithm; li
版次1
doihttps://doi.org/10.1007/b98850
isbn_ebook978-0-387-22724-5Series ISSN 1431-8784 Series E-ISSN 2197-1706
issn_series 1431-8784
copyrightSpringer Science+Business Media New York 1999
The information of publication is updating

书目名称Numerical Analysis for Statisticians影响因子(影响力)




书目名称Numerical Analysis for Statisticians影响因子(影响力)学科排名




书目名称Numerical Analysis for Statisticians网络公开度




书目名称Numerical Analysis for Statisticians网络公开度学科排名




书目名称Numerical Analysis for Statisticians被引频次




书目名称Numerical Analysis for Statisticians被引频次学科排名




书目名称Numerical Analysis for Statisticians年度引用




书目名称Numerical Analysis for Statisticians年度引用学科排名




书目名称Numerical Analysis for Statisticians读者反馈




书目名称Numerical Analysis for Statisticians读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:03:39 | 显示全部楼层
发表于 2025-3-22 03:54:30 | 显示全部楼层
发表于 2025-3-22 05:01:38 | 显示全部楼层
Numerical Analysis for Statisticians978-0-387-22724-5Series ISSN 1431-8784 Series E-ISSN 2197-1706
发表于 2025-3-22 09:57:56 | 显示全部楼层
1431-8784 s. By intent this book is not a compendium of tried and trusted algorithms, is not a c- sumer’s guide to existing statistical software, and is not an exposition978-0-387-22724-5Series ISSN 1431-8784 Series E-ISSN 2197-1706
发表于 2025-3-22 15:49:43 | 显示全部楼层
d bifurcates into longer right middle lobe bronchus and shorter right lower lobe bronchus. The left bronchus divides into an upper lobe and lower lobe bronchus and subsequently to their segmental bronchi. Lingular bronchus arises from the left upper lobe bronchus. The segmental bronchi help in localizing the bronchopulmonary segments (Table 2.2).
发表于 2025-3-22 17:02:06 | 显示全部楼层
发表于 2025-3-22 22:07:05 | 显示全部楼层
eurologists, psychiatrists and psychologists, physical therapists, occupational medicine specialists, and pain specialists alike, will find this book to be a must have for successfully treating, referring and diagnosing TOS in clinical practice.   .978-1-4471-7155-3978-1-4471-4366-6
发表于 2025-3-23 04:38:07 | 显示全部楼层
发表于 2025-3-23 09:18:29 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 09:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表