找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nonlinear Filters; Estimation and Appli Hisashi Tanizaki Book 1996Latest edition Springer-Verlag Berlin Heidelberg 1996 Prognoseverfahren.S

[复制链接]
查看: 37669|回复: 42
发表于 2025-3-21 16:44:48 | 显示全部楼层 |阅读模式
书目名称Nonlinear Filters
副标题Estimation and Appli
编辑Hisashi Tanizaki
视频videohttp://file.papertrans.cn/668/667499/667499.mp4
图书封面Titlebook: Nonlinear Filters; Estimation and Appli Hisashi Tanizaki Book 1996Latest edition Springer-Verlag Berlin Heidelberg 1996 Prognoseverfahren.S
描述Nonlinear and nonnormal filters are introduced and developed. Traditional nonlinear filters such as the extended Kalman filter and the Gaussian sum filter give biased filtering estimates, and therefore several nonlinear and nonnormal filters have been derived from the underlying probability density functions. The density-based nonlinear filters introduced in this book utilize numerical integration, Monte-Carlo integration with importance sampling or rejection sampling and the obtained filtering estimates are asymptotically unbiased and efficient. By Monte-Carlo simulation studies, all the nonlinear filters are compared. Finally, as an empirical application, consumption functions based on the rational expectation model are estimated for the nonlinear filters, where US, UK and Japan economies are compared.
出版日期Book 1996Latest edition
关键词Prognoseverfahren; Simulation; Zeitreihen; econometrics; forecasting; nichtlineare Filter; nonlinear filte
版次2
doihttps://doi.org/10.1007/978-3-662-03223-7
isbn_softcover978-3-642-08253-5
isbn_ebook978-3-662-03223-7
copyrightSpringer-Verlag Berlin Heidelberg 1996
The information of publication is updating

书目名称Nonlinear Filters影响因子(影响力)




书目名称Nonlinear Filters影响因子(影响力)学科排名




书目名称Nonlinear Filters网络公开度




书目名称Nonlinear Filters网络公开度学科排名




书目名称Nonlinear Filters被引频次




书目名称Nonlinear Filters被引频次学科排名




书目名称Nonlinear Filters年度引用




书目名称Nonlinear Filters年度引用学科排名




书目名称Nonlinear Filters读者反馈




书目名称Nonlinear Filters读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:14:57 | 显示全部楼层
发表于 2025-3-22 02:03:24 | 显示全部楼层
发表于 2025-3-22 04:51:46 | 显示全部楼层
发表于 2025-3-22 10:59:33 | 显示全部楼层
https://doi.org/10.1007/978-3-662-03223-7Prognoseverfahren; Simulation; Zeitreihen; econometrics; forecasting; nichtlineare Filter; nonlinear filte
发表于 2025-3-22 14:20:34 | 显示全部楼层
978-3-642-08253-5Springer-Verlag Berlin Heidelberg 1996
发表于 2025-3-22 18:37:38 | 显示全部楼层
Introduction,cations, we can consider a time-varying parameter model, an estimation of seasonal components, an estimation of autoregressive-moving average (ARMA) model, prediction of final data and so on. Thus, the Kalman filter is particularly powerful and useful in the model that includes unobservable componen
发表于 2025-3-22 22:47:10 | 显示全部楼层
发表于 2025-3-23 05:06:19 | 显示全部楼层
Traditional Nonlinear Filters,eral. Unless the distributions are normal and the measurement and transition equations are linear, we cannot derive the explicit expression for the filtering algorithm. Therefore, some approximation is necessary for estimation. In Chapter 3, the nonlinear filtering algorithms are derived by approxim
发表于 2025-3-23 05:53:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 15:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表