找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nonlinear Eigenproblems in Image Processing and Computer Vision; Guy Gilboa Book 2018 Springer International Publishing AG, part of Spring

[复制链接]
查看: 48373|回复: 50
发表于 2025-3-21 20:05:28 | 显示全部楼层 |阅读模式
书目名称Nonlinear Eigenproblems in Image Processing and Computer Vision
编辑Guy Gilboa
视频videohttp://file.papertrans.cn/668/667470/667470.mp4
概述The first book on this topic, relating the new theory to image processing and computer vision applications.Integrates deep mathematical concepts from various fields into a coherent manuscript with plo
丛书名称Advances in Computer Vision and Pattern Recognition
图书封面Titlebook: Nonlinear Eigenproblems in Image Processing and Computer Vision;  Guy Gilboa Book 2018 Springer International Publishing AG, part of Spring
描述.This unique text/reference presents a fresh look at nonlinear processing through nonlinear eigenvalue analysis, highlighting how one-homogeneous convex functionals can induce nonlinear operators that can be analyzed within an eigenvalue framework. The text opens with an introduction to the mathematical background, together with a summary of classical variational algorithms for vision. This is followed by a focus on the foundations and applications of the new multi-scale representation based on non-linear eigenproblems. The book then concludes with a discussion of new numerical techniques for finding nonlinear eigenfunctions, and promising research directions beyond the convex case..Topics and features: introduces the classical Fourier transform and its associated operator and energy, and asks how these concepts can be generalized in the nonlinear case; reviews the basic mathematical notion, briefly outlining the use of variational and flow-based methods to solve image-processingand computer vision algorithms; describes the properties of the total variation (TV) functional, and how the concept of nonlinear eigenfunctions relate to convex functionals; provides a spectral framework f
出版日期Book 2018
关键词Variational Methods; Nonlinear Spectral Theory; Convex Analysis; Image Processing; Multiscale Representa
版次1
doihttps://doi.org/10.1007/978-3-319-75847-3
isbn_softcover978-3-030-09339-6
isbn_ebook978-3-319-75847-3Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

书目名称Nonlinear Eigenproblems in Image Processing and Computer Vision影响因子(影响力)




书目名称Nonlinear Eigenproblems in Image Processing and Computer Vision影响因子(影响力)学科排名




书目名称Nonlinear Eigenproblems in Image Processing and Computer Vision网络公开度




书目名称Nonlinear Eigenproblems in Image Processing and Computer Vision网络公开度学科排名




书目名称Nonlinear Eigenproblems in Image Processing and Computer Vision被引频次




书目名称Nonlinear Eigenproblems in Image Processing and Computer Vision被引频次学科排名




书目名称Nonlinear Eigenproblems in Image Processing and Computer Vision年度引用




书目名称Nonlinear Eigenproblems in Image Processing and Computer Vision年度引用学科排名




书目名称Nonlinear Eigenproblems in Image Processing and Computer Vision读者反馈




书目名称Nonlinear Eigenproblems in Image Processing and Computer Vision读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:19:39 | 显示全部楼层
发表于 2025-3-22 02:20:50 | 显示全部楼层
发表于 2025-3-22 06:04:45 | 显示全部楼层
Book 2018ex functionals can induce nonlinear operators that can be analyzed within an eigenvalue framework. The text opens with an introduction to the mathematical background, together with a summary of classical variational algorithms for vision. This is followed by a focus on the foundations and applicatio
发表于 2025-3-22 09:17:45 | 显示全部楼层
Applications Using Nonlinear Spectral Processing,asic operations of attenuating, enhancing, and mixing certain spectral bands. Thus, a single framework with a solid theory can have very diverse applications, similar to classical linear transforms. The aim here is to give several interesting examples and to show the potential of using the nonlinear spectral formulations.
发表于 2025-3-22 15:15:24 | 显示全部楼层
Numerical Methods for Finding Eigenfunctions,n more detail a recent work by Raz Nossek and the author where a flow is used to solve the problem. This can be generalized in various ways. A generalization of Aujol et al., which is well supported theoretically, is outlined at the end of this chapter.
发表于 2025-3-22 20:52:22 | 显示全部楼层
发表于 2025-3-22 22:23:22 | 显示全部楼层
发表于 2025-3-23 04:21:49 | 显示全部楼层
2191-6586 singand computer vision algorithms; describes the properties of the total variation (TV) functional, and how the concept of nonlinear eigenfunctions relate to convex functionals; provides a spectral framework f978-3-030-09339-6978-3-319-75847-3Series ISSN 2191-6586 Series E-ISSN 2191-6594
发表于 2025-3-23 08:08:35 | 显示全部楼层
Spectral One-Homogeneous Framework,own in the finite-dimensional case. A fundamental result is that in some settings we can show a precise decomposition of the input signal into eigenfunctions. In addition, the spectral components turn to be orthogonal to each other.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-22 07:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表