找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Non-Standard Parameter Adaptation for Exploratory Data Analysis; Wesam Ashour Barbakh,Ying Wu,Colin Fyfe Book 2009 Springer-Verlag Berlin

[复制链接]
查看: 27238|回复: 42
发表于 2025-3-21 16:29:38 | 显示全部楼层 |阅读模式
书目名称Non-Standard Parameter Adaptation for Exploratory Data Analysis
编辑Wesam Ashour Barbakh,Ying Wu,Colin Fyfe
视频video
概述Presents novel methods of parameter adaptation in machine learning.Valuable contribution to create a true artificial intelligence.Recent research in Reinforcement learning, cross entropy and artificia
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Non-Standard Parameter Adaptation for Exploratory Data Analysis;  Wesam Ashour Barbakh,Ying Wu,Colin Fyfe Book 2009 Springer-Verlag Berlin
描述.Exploratory data analysis, also known as data mining or knowledge discovery from databases, is typically based on the optimisation of a specific function of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by reviewing some standard clustering algorithms and projection algorithms before presenting various non-standard criteria for clustering. The family of algorithms developed are shown to perform better than the standard clustering algorithms on a variety of datasets...We then consider extensions of the basic mappings which maintain some topology of the original data space. Finally we show how reinforcement learning can be used as a clustering mechanism before turning to projection methods. ...We show that several varieties of reinforcement learning may also be used to define optimal projections for example for principal component analysis, exploratory projection pursuit and canonical correlation analysis. The new method of cross entropy adaptation is then introduced and used as a means of optimising projections. Finally an artificial immune system is used to create optimal projections and combi
出版日期Book 2009
关键词Clustering; data analysis; data mining; knowledge discovery; machine learning; principal component analys
版次1
doihttps://doi.org/10.1007/978-3-642-04005-4
isbn_softcover978-3-642-26055-1
isbn_ebook978-3-642-04005-4Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

书目名称Non-Standard Parameter Adaptation for Exploratory Data Analysis影响因子(影响力)




书目名称Non-Standard Parameter Adaptation for Exploratory Data Analysis影响因子(影响力)学科排名




书目名称Non-Standard Parameter Adaptation for Exploratory Data Analysis网络公开度




书目名称Non-Standard Parameter Adaptation for Exploratory Data Analysis网络公开度学科排名




书目名称Non-Standard Parameter Adaptation for Exploratory Data Analysis被引频次




书目名称Non-Standard Parameter Adaptation for Exploratory Data Analysis被引频次学科排名




书目名称Non-Standard Parameter Adaptation for Exploratory Data Analysis年度引用




书目名称Non-Standard Parameter Adaptation for Exploratory Data Analysis年度引用学科排名




书目名称Non-Standard Parameter Adaptation for Exploratory Data Analysis读者反馈




书目名称Non-Standard Parameter Adaptation for Exploratory Data Analysis读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:32:39 | 显示全部楼层
Reinforcement Learning of Projections,e show that the last method has accurate convergence, even for non-linear projections..Also, it is frequently important in projection methods to identify multiple components. Although we can find more than one component by deflationary methods such as the Gram-Schmidt method, these methods seem to b
发表于 2025-3-22 01:18:20 | 显示全部楼层
发表于 2025-3-22 06:20:34 | 显示全部楼层
发表于 2025-3-22 10:07:45 | 显示全部楼层
发表于 2025-3-22 14:11:36 | 显示全部楼层
发表于 2025-3-22 20:46:56 | 显示全部楼层
1860-949X elation analysis. The new method of cross entropy adaptation is then introduced and used as a means of optimising projections. Finally an artificial immune system is used to create optimal projections and combi978-3-642-26055-1978-3-642-04005-4Series ISSN 1860-949X Series E-ISSN 1860-9503
发表于 2025-3-23 00:50:53 | 显示全部楼层
Book 2009tion of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by reviewing some standard clustering algorithms and projection algorithms before presenting various non-standard criteria for clustering. The family of algo
发表于 2025-3-23 02:54:45 | 显示全部楼层
Review of Linear Projection Methods,ered data space by projecting the data to a lower dimensional space. The basic idea is to find some suitable function ., which maps the original data sample . into a .-dimensional manifold by .(.) = ., where .. In this section, we review several projection methods in detail.
发表于 2025-3-23 09:01:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 08:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表