找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Next Generation Healthcare Informatics; B. K. Tripathy,Pawan Lingras,Chiranji Lal Chowdhar Book 2022 The Editor(s) (if applicable) and The

[复制链接]
查看: 28842|回复: 61
发表于 2025-3-21 19:26:04 | 显示全部楼层 |阅读模式
书目名称Next Generation Healthcare Informatics
编辑B. K. Tripathy,Pawan Lingras,Chiranji Lal Chowdhar
视频video
概述Provides a holistic discussion on the new landscape of medical technologies.Presents case studies with references to real-world applications.Promotes research-based chapters to enhance research skills
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Next Generation Healthcare Informatics;  B. K. Tripathy,Pawan Lingras,Chiranji Lal Chowdhar Book 2022 The Editor(s) (if applicable) and The
描述.This edited book provides information on emerging fields of next-generation healthcare informatics with a special emphasis on emerging developments and applications of artificial intelligence, deep learning techniques, computational intelligence methods, Internet of medical things (IoMT), optimization techniques, decision making, nanomedicine, and cloud computing. The book provides a conceptual framework and roadmap for decision-makers for this transformation. The chapters involved in this book cover challenges and opportunities for diabetic retinopathy detection based on deep learning applications, deep learning accelerators in IoT and IoMT, health data analysis, deep reinforcement-based conversational AI agent in healthcare systems, examination of health data performance, multisource data in intelligent medicine, application of genetic algorithms in health care, mental disorder, digital healthcare system with big data analytics, encryption methods in healthcare data security, computation and cognitive bias in healthcare intelligence and pharmacogenomics, guided imagery therapy, cancer detection and prediction techniques, medical image processing for coronavirus, and imbalance le
出版日期Book 2022
关键词Computational Intelligence; Deep Learning; Machine Learning; Healthcare Informatics; Artificial Intellig
版次1
doihttps://doi.org/10.1007/978-981-19-2416-3
isbn_softcover978-981-19-2418-7
isbn_ebook978-981-19-2416-3Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Next Generation Healthcare Informatics影响因子(影响力)




书目名称Next Generation Healthcare Informatics影响因子(影响力)学科排名




书目名称Next Generation Healthcare Informatics网络公开度




书目名称Next Generation Healthcare Informatics网络公开度学科排名




书目名称Next Generation Healthcare Informatics被引频次




书目名称Next Generation Healthcare Informatics被引频次学科排名




书目名称Next Generation Healthcare Informatics年度引用




书目名称Next Generation Healthcare Informatics年度引用学科排名




书目名称Next Generation Healthcare Informatics读者反馈




书目名称Next Generation Healthcare Informatics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:23:49 | 显示全部楼层
Next Generation Healthcare Informatics978-981-19-2416-3Series ISSN 1860-949X Series E-ISSN 1860-9503
发表于 2025-3-22 02:58:33 | 显示全部楼层
发表于 2025-3-22 05:19:07 | 显示全部楼层
https://doi.org/10.1007/978-981-19-2416-3Computational Intelligence; Deep Learning; Machine Learning; Healthcare Informatics; Artificial Intellig
发表于 2025-3-22 09:12:22 | 显示全部楼层
发表于 2025-3-22 13:01:31 | 显示全部楼层
Methods for the Recognition of Multisource Data in Intelligent Medicine: A Review and Next-GeneratiIntelligent medical systems can easily diagnose the disease predictions that real physicians may overlook by establishing a connection between the disease and the symptoms. These developments have created the need for new hardware and software technologies to process of big data in medical science.
发表于 2025-3-22 20:25:25 | 显示全部楼层
Deep Learning in Healthcare: Applications, Challenges, and Opportunities,mation. In current biomedical research, numerous types of data have emerged, such as imaging, electronic health records, text, and sensor data, all of which are complicated, diverse, inadequately annotated, and usually unstructured. Statistical learning and traditional data mining techniques often n
发表于 2025-3-22 23:25:08 | 显示全部楼层
发表于 2025-3-23 04:56:36 | 显示全部楼层
发表于 2025-3-23 05:43:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 20:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表