找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural-Symbolic Learning and Reasoning; 18th International C Tarek R. Besold,Artur d’Avila Garcez,Benedikt Wagn Conference proceedings 2024

[复制链接]
查看: 15200|回复: 60
发表于 2025-3-21 16:56:31 | 显示全部楼层 |阅读模式
书目名称Neural-Symbolic Learning and Reasoning
副标题18th International C
编辑Tarek R. Besold,Artur d’Avila Garcez,Benedikt Wagn
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Neural-Symbolic Learning and Reasoning; 18th International C Tarek R. Besold,Artur d’Avila Garcez,Benedikt Wagn Conference proceedings 2024
描述.This book constitutes the refereed proceedings of the 18th International Conference on Neural-Symbolic Learning and Reasoning, NeSy 2024, held in Barcelona, Spain during September 9-12th, 2024...The 30 full papers and 18 short papers were carefully reviewed and selected from 89 submissions, which presented the latest and ongoing research work on neurosymbolic AI. Neurosymbolic AI aims to build rich computational models and systems by combining neural and symbolic learning and reasoning paradigms. This combination hopes to form synergies among their strengths while overcoming their.complementary weaknesses..
出版日期Conference proceedings 2024
关键词Neurosymbolic Artificial Intelligence; Hybrid Learning and Reasoning Systems; Artificial intelligence;
版次1
doihttps://doi.org/10.1007/978-3-031-71170-1
isbn_softcover978-3-031-71169-5
isbn_ebook978-3-031-71170-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Neural-Symbolic Learning and Reasoning影响因子(影响力)




书目名称Neural-Symbolic Learning and Reasoning影响因子(影响力)学科排名




书目名称Neural-Symbolic Learning and Reasoning网络公开度




书目名称Neural-Symbolic Learning and Reasoning网络公开度学科排名




书目名称Neural-Symbolic Learning and Reasoning被引频次




书目名称Neural-Symbolic Learning and Reasoning被引频次学科排名




书目名称Neural-Symbolic Learning and Reasoning年度引用




书目名称Neural-Symbolic Learning and Reasoning年度引用学科排名




书目名称Neural-Symbolic Learning and Reasoning读者反馈




书目名称Neural-Symbolic Learning and Reasoning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:16:11 | 显示全部楼层
发表于 2025-3-22 02:16:09 | 显示全部楼层
发表于 2025-3-22 08:06:03 | 显示全部楼层
发表于 2025-3-22 09:17:18 | 显示全部楼层
Towards Understanding the Impact of Graph Structure on Knowledge Graph Embeddingsthodologies for producing KGs, which span notions of expressivity, and are tailored for different use-cases and domains. Now, as neurosymbolic methods rise in prominence, it is important to understand how the development of KGs according to these methodologies impact downstream tasks, such as link p
发表于 2025-3-22 14:49:34 | 显示全部楼层
发表于 2025-3-22 19:49:27 | 显示全部楼层
Metacognitive AI: Framework and the Case for a Neurosymbolic Approachgy. In this position paper, we examine the concept of applying metacognition to artificial intelligence. We introduce a framework for understanding metacognitive artificial intelligence (AI) that we call TRAP: transparency, reasoning, adaptation, and perception. We discuss each of these aspects in-t
发表于 2025-3-22 21:56:16 | 显示全部楼层
Enhancing Logical Tensor Networks: Integrating Uninorm-Based Fuzzy Operators for Complex Reasoning between t-norms and t-conorms, offer unparalleled flexibility and adaptability, making them ideal for modeling the complex, often ambiguous relationships inherent in real-world data. By embedding these operators into Logic Tensor Networks, we present a methodology that significantly increases the n
发表于 2025-3-23 03:37:07 | 显示全部楼层
Parameter Learning Using Approximate Model Counting these hybrid models, these methods use a knowledge compiler to turn the symbolic model into a differentiable arithmetic circuit, after which gradient descent can be performed. However, these methods require compiling a reasonably sized circuit, which is not always possible, as for many symbolic pro
发表于 2025-3-23 08:51:35 | 显示全部楼层
Large-Scale Knowledge Integration for Enhanced Molecular Property Predictionitical for advancements in drug discovery and materials science. While recent work has primarily focused on data-driven approaches, the KANO model introduces a novel paradigm by incorporating knowledge-enhanced pre-training. In this work, we expand upon KANO by integrating the large-scale ChEBI know
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 01:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表