找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 20th International C Minho Lee,Akira Hirose,Rhee Man Kil Conference proceedings 2013 Springer-Verlag Berlin

[复制链接]
查看: 36495|回复: 57
发表于 2025-3-21 17:31:56 | 显示全部楼层 |阅读模式
书目名称Neural Information Processing
副标题20th International C
编辑Minho Lee,Akira Hirose,Rhee Man Kil
视频video
概述Up-to-date results.State-of-the-art research.Fast-track conference proceedings
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Neural Information Processing; 20th International C Minho Lee,Akira Hirose,Rhee Man Kil Conference proceedings 2013 Springer-Verlag Berlin
描述The three volume set LNCS 8226, LNCS 8227 and LNCS 8228 constitutes the proceedings of the 20th International Conference on Neural Information Processing, ICONIP 2013, held in Daegu, Korea, in November 2013. The 180 full and 75 poster papers presented together with 4 extended abstracts were carefully reviewed and selected from numerous submissions. These papers cover all major topics of theoretical research, empirical study and applications of neural information processing research. The specific topics covered are as follows: cognitive science and artificial intelligence; learning theory, algorithms and architectures; computational neuroscience and brain imaging; vision, speech and signal processing; control, robotics and hardware technologies and novel approaches and applications.
出版日期Conference proceedings 2013
关键词activity recognition; artificial intelligence; image processing; machine learning; pattern recognition
版次1
doihttps://doi.org/10.1007/978-3-642-42042-9
isbn_softcover978-3-642-42041-2
isbn_ebook978-3-642-42042-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

书目名称Neural Information Processing影响因子(影响力)




书目名称Neural Information Processing影响因子(影响力)学科排名




书目名称Neural Information Processing网络公开度




书目名称Neural Information Processing网络公开度学科排名




书目名称Neural Information Processing被引频次




书目名称Neural Information Processing被引频次学科排名




书目名称Neural Information Processing年度引用




书目名称Neural Information Processing年度引用学科排名




书目名称Neural Information Processing读者反馈




书目名称Neural Information Processing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:07:28 | 显示全部楼层
发表于 2025-3-22 00:36:06 | 显示全部楼层
Kazushi Ikeda,Akira Hontanires and the R statistic language and environment for analyzing data and computing indicators. The proposed process was applied in the evaluation of the research project MUSES. The MUSES case study shows that the proposed process provides an easy and well supported path to the definition and implemen
发表于 2025-3-22 05:59:36 | 显示全部楼层
发表于 2025-3-22 10:29:37 | 显示全部楼层
Duzhou Zhang,Xibin Caores and the R statistic language and environment for analyzing data and computing indicators. The proposed process was applied in the evaluation of the research project MUSES. The MUSES case study shows that the proposed process provides an easy and well supported path to the definition and implemen
发表于 2025-3-22 13:33:39 | 显示全部楼层
发表于 2025-3-22 17:50:28 | 显示全部楼层
发表于 2025-3-22 23:58:09 | 显示全部楼层
Xianneng Li,Wen He,Kotaro Hirasawa software shall later on be reused in another context. The new context may, for example, comprise additional sensors. In this situation, it is hard for developers to decide which input variables are still necessary and should somehow be monitored and which ones not. To avoid such problems, we sugges
发表于 2025-3-23 04:42:11 | 显示全部楼层
发表于 2025-3-23 08:06:29 | 显示全部楼层
Vikas K. Garg,Sneha Chaudhari,Ankur Narang existing approach. The approach greatly enhances balanced accuracy by 6.25%, AUC by 7.19%, and TPR by 16.78% in reopening prediction, improves accuracy by 7.71%, precision by 0.56%, recall by 10.96%, and F-measure by 6.27% in decision prediction, and reduces MMAE by 5.73% in lifetime prediction com
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 06:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表