找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 28th International C Teddy Mantoro,Minho Lee,Achmad Nizar Hidayanto Conference proceedings 2021 Springer Nat

[复制链接]
查看: 29179|回复: 60
发表于 2025-3-21 17:24:38 | 显示全部楼层 |阅读模式
书目名称Neural Information Processing
副标题28th International C
编辑Teddy Mantoro,Minho Lee,Achmad Nizar Hidayanto
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Neural Information Processing; 28th International C Teddy Mantoro,Minho Lee,Achmad Nizar Hidayanto Conference proceedings 2021 Springer Nat
描述.The four-volume proceedings LNCS 13108, 13109, 13110, and 13111 constitutes the proceedings of the 28th International Conference on Neural Information Processing, ICONIP 2021, which was held during December 8-12, 2021. The conference was planned to take place in Bali, Indonesia but changed to an online format due to the COVID-19 pandemic. ..The total of 226 full papers presented in these proceedings was carefully reviewed and selected from 1093 submissions. The papers were organized in topical sections as follows:..Part I: Theory and algorithms; ..Part II: Theory and algorithms; human centred computing; AI and cybersecurity;..Part III: Cognitive neurosciences; reliable, robust, and secure machine learning algorithms; theory and applications of natural computing paradigms; advances in deep and shallow machine learning algorithms for biomedical data and imaging; applications;  ..Part IV: Applications..
出版日期Conference proceedings 2021
关键词artificial intelligence; computer vision; data mining; databases; deep learning; image processing; image r
版次1
doihttps://doi.org/10.1007/978-3-030-92185-9
isbn_softcover978-3-030-92184-2
isbn_ebook978-3-030-92185-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Neural Information Processing影响因子(影响力)




书目名称Neural Information Processing影响因子(影响力)学科排名




书目名称Neural Information Processing网络公开度




书目名称Neural Information Processing网络公开度学科排名




书目名称Neural Information Processing被引频次




书目名称Neural Information Processing被引频次学科排名




书目名称Neural Information Processing年度引用




书目名称Neural Information Processing年度引用学科排名




书目名称Neural Information Processing读者反馈




书目名称Neural Information Processing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:10:05 | 显示全部楼层
发表于 2025-3-22 01:00:59 | 显示全部楼层
发表于 2025-3-22 07:33:02 | 显示全部楼层
发表于 2025-3-22 11:03:56 | 显示全部楼层
Metric Learning Based Vision Transformer for Product Matching products. The proposed ML-VIT adopts Arcface loss to achieve intra-class compactness and inter-class dispersion. Compared with Siamese neural network and other pre-trained models in terms of F1 score and accuracy, ML-VIT is proved to yield modest embeddings for product image matching.
发表于 2025-3-22 14:43:25 | 显示全部楼层
发表于 2025-3-22 20:29:08 | 显示全部楼层
A Focally Discriminative Loss for Unsupervised Domain Adaptationiscrimination. The intergration of both losses makes the intra-class features close as well as push away the inter-class features far from each other. Moreover, the improved loss is simple yet effective. Our model shows state-of-the-art compared to the most domain adaptation methods.
发表于 2025-3-22 22:51:35 | 显示全部楼层
Learning Discriminative Representation with Attention and Diversity for Large-Scale Face Recognitionenvalue decomposition or the approximation process. Visualization results illustrate that models with our attention module and diversity regularizers capture more critical localization information. And competitive performance on large-scale face recognition benchmark verifies the effectiveness of our approaches.
发表于 2025-3-23 05:12:22 | 显示全部楼层
Multi-task Perceptual Occlusion Face Detection with Semantic Attention Networkon is selected and aggregated automatically to the task of occlusion face detection. Finally, MTOFD is tested and compared with some typical algorithms, such as FAN and AOFD, and it is found that our algorithm achieves state-of-the-art performance on dataset MAFA.
发表于 2025-3-23 05:55:39 | 显示全部楼层
RAIDU-Net: Image Inpainting via Residual Attention Fusion and Gated Information Distillationnd decoder, which can further extract useful low-level features from the generator. Experiments on public databases show that our RAIDU-Net architecture achieves promising results and outperforms the existing state-of-the-art methods.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 08:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表