找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Network Data Analytics; A Hands-On Approach K. G. Srinivasa,Siddesh G. M.,Srinidhi H. Book 2018 Springer International Publishing AG 2018

[复制链接]
查看: 48957|回复: 56
发表于 2025-3-21 18:05:02 | 显示全部楼层 |阅读模式
书目名称Network Data Analytics
副标题A Hands-On Approach
编辑K. G. Srinivasa,Siddesh G. M.,Srinidhi H.
视频video
概述Introduces tools for data analytics, machine learning for data analytics, and for exploring and visualizing data.Suitable as both a practical guide and a reference for researchers and students.Provide
丛书名称Computer Communications and Networks
图书封面Titlebook: Network Data Analytics; A Hands-On Approach  K. G. Srinivasa,Siddesh G. M.,Srinidhi H. Book 2018 Springer International Publishing AG 2018
描述In order to carry out data analytics, we need powerful and flexible computing software. However the software available for data analytics is often proprietary and can be expensive. This book reviews Apache tools, which are open source and easy to use. After providing an overview of the background of data analytics, covering the different types of analysis and the basics of using Hadoop as a tool, it focuses on different Hadoop ecosystem tools, like Apache Flume, Apache Spark, Apache Storm, Apache Hive, R, and Python, which can be used for different types of analysis. It then examines the different machine learning techniques that are useful for data analytics, and how to visualize data with different graphs and charts.. .Presenting data analytics from a practice-oriented viewpoint, the book discusses useful tools and approaches for data analytics, supported by concrete code examples. The book is a valuable reference resource for graduate students and professionals in related fields, and is also of interest to general readers with an understanding of data analytics..
出版日期Book 2018
关键词Hadoop; Data Analytics; Data Visualization; High Performance Computing; Machine Learning Algorithms
版次1
doihttps://doi.org/10.1007/978-3-319-77800-6
isbn_softcover978-3-030-08544-5
isbn_ebook978-3-319-77800-6Series ISSN 1617-7975 Series E-ISSN 2197-8433
issn_series 1617-7975
copyrightSpringer International Publishing AG 2018
The information of publication is updating

书目名称Network Data Analytics影响因子(影响力)




书目名称Network Data Analytics影响因子(影响力)学科排名




书目名称Network Data Analytics网络公开度




书目名称Network Data Analytics网络公开度学科排名




书目名称Network Data Analytics被引频次




书目名称Network Data Analytics被引频次学科排名




书目名称Network Data Analytics年度引用




书目名称Network Data Analytics年度引用学科排名




书目名称Network Data Analytics读者反馈




书目名称Network Data Analytics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:00:00 | 显示全部楼层
发表于 2025-3-22 02:05:59 | 显示全部楼层
发表于 2025-3-22 07:28:04 | 显示全部楼层
Basics of Machine LearningIn this chapter, the basics of machine learning are introduced with its key terminologies and its tasks. The different types of tasks that are involved in machine learning are data acquisition, data cleaning, data modeling, and data visualization. These tasks are discussed in this chapter with steps on getting started with machine learning.
发表于 2025-3-22 11:15:35 | 显示全部楼层
Other Analytical Techniquesroviding the suitable offers for the customers. Random forest is a classification technique that builds a number of decision trees based on the decision points in the classification. In this chapter, these analytical techniques are discussed with examples.
发表于 2025-3-22 16:11:37 | 显示全部楼层
发表于 2025-3-22 20:04:27 | 显示全部楼层
发表于 2025-3-22 22:06:41 | 显示全部楼层
发表于 2025-3-23 05:27:25 | 显示全部楼层
发表于 2025-3-23 08:03:34 | 显示全部楼层
Apache Hiver processing the data. In this chapter, Hive and its architectural components are discussed first. Later, the chapter is followed with different kinds of operations that can be executed in Hive and examples on it. The chapter concludes with the network log and call log case studies with Hive.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 11:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表