找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Natural Function Algebras; Charles E. Rickart Textbook 1979 Springer-Verlag New York Inc. 1979 Funktionenalgebra.Lemma.Natural.Vector spac

[复制链接]
楼主: iniquity
发表于 2025-3-25 05:35:54 | 显示全部楼层
发表于 2025-3-25 10:55:33 | 显示全部楼层
Maximum Properties of Holomorphic Functions,ssume until further notice that [Σ, .] is a natural system. The next theorem is an extension of the local maximum principle (given in Theorem 14.2) to almost .-holomorphic functions (Definition 17.3 (ii)).
发表于 2025-3-25 11:57:26 | 显示全部楼层
发表于 2025-3-25 18:52:05 | 显示全部楼层
发表于 2025-3-25 21:01:09 | 显示全部楼层
发表于 2025-3-26 03:51:26 | 显示全部楼层
,The Šilov Boundary and Local Maximum Principle,act set K ⊂⊂ Σ that dominates φ; i.e..In general the dominating compact set K will not be uniquely determined. For example any larger compact set will also serve. Denote by K. the collection of all compact subsets of Σ that dominate φ. A set K. ∈ K. is called a . for φ if it is minimal; i.e. no comp
发表于 2025-3-26 07:29:55 | 显示全部楼层
Holomorphic Functions,in n variables. In the case of an arbitrary pair [Σ, .] the analogy with [ℂ., ℘] suggests consideration of functions that are defined on subsets of Σ and are local uniform limits of elements from the algebra G. Such functions turn out to have many nice properties. On the other hand, as might be expe
发表于 2025-3-26 08:40:32 | 显示全部楼层
发表于 2025-3-26 13:29:31 | 显示全部楼层
发表于 2025-3-26 17:44:53 | 显示全部楼层
Varieties,sions. As might be expected, the fundamental idea is to let the .-holomorphic functions play a role in the abstract situation analogous to that of the ordinary holomorphic functions in the finite dimensional case. However, in the general case it turns out to be desirable to formulate the definition
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-21 21:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表