找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Multivariate Statistical Machine Learning Methods for Genomic Prediction; Osval Antonio Montesinos López,Abelardo Montesinos Book‘‘‘‘‘‘‘‘

[复制链接]
查看: 48623|回复: 35
发表于 2025-3-21 19:37:16 | 显示全部楼层 |阅读模式
书目名称Multivariate Statistical Machine Learning Methods for Genomic Prediction
编辑Osval Antonio Montesinos López,Abelardo Montesinos
视频video
概述This is an Open Access book published under the CC-BY 4.0 license.Highlights statistical and machine learning models for complex genetic and environmental interactions.Offers a practical approach usin
图书封面Titlebook: Multivariate Statistical Machine Learning Methods for Genomic Prediction;  Osval Antonio Montesinos López,Abelardo Montesinos Book‘‘‘‘‘‘‘‘
描述This book is open access under a CC BY 4.0 license.This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool.  To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension..The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool..
出版日期Book‘‘‘‘‘‘‘‘ 2022
关键词open access; Statistical learning; Bayesian regression; Deep learning; Non linear regression; Plant breed
版次1
doihttps://doi.org/10.1007/978-3-030-89010-0
isbn_softcover978-3-030-89012-4
isbn_ebook978-3-030-89010-0
copyrightThe Editor(s) (if applicable) and The Author(s) 2022
The information of publication is updating

书目名称Multivariate Statistical Machine Learning Methods for Genomic Prediction影响因子(影响力)




书目名称Multivariate Statistical Machine Learning Methods for Genomic Prediction影响因子(影响力)学科排名




书目名称Multivariate Statistical Machine Learning Methods for Genomic Prediction网络公开度




书目名称Multivariate Statistical Machine Learning Methods for Genomic Prediction网络公开度学科排名




书目名称Multivariate Statistical Machine Learning Methods for Genomic Prediction被引频次




书目名称Multivariate Statistical Machine Learning Methods for Genomic Prediction被引频次学科排名




书目名称Multivariate Statistical Machine Learning Methods for Genomic Prediction年度引用




书目名称Multivariate Statistical Machine Learning Methods for Genomic Prediction年度引用学科排名




书目名称Multivariate Statistical Machine Learning Methods for Genomic Prediction读者反馈




书目名称Multivariate Statistical Machine Learning Methods for Genomic Prediction读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:39:37 | 显示全部楼层
发表于 2025-3-22 00:53:09 | 显示全部楼层
发表于 2025-3-22 08:16:50 | 显示全部楼层
发表于 2025-3-22 10:45:38 | 显示全部楼层
发表于 2025-3-22 14:19:52 | 显示全部楼层
978-3-030-89012-4The Editor(s) (if applicable) and The Author(s) 2022
发表于 2025-3-22 20:19:01 | 显示全部楼层
Multivariate Statistical Machine Learning Methods for Genomic Prediction
发表于 2025-3-22 22:47:04 | 显示全部楼层
Multivariate Statistical Machine Learning Methods for Genomic Prediction978-3-030-89010-0
发表于 2025-3-23 03:56:37 | 显示全部楼层
发表于 2025-3-23 07:09:23 | 显示全部楼层
Book‘‘‘‘‘‘‘‘ 2022ticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 21:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表