找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Models of Computation for Big Data; Rajendra Akerkar Book 2018 The Author(s), under exclusive license to Springer Nature Switzerland AG 20

[复制链接]
查看: 45203|回复: 35
发表于 2025-3-21 19:51:38 | 显示全部楼层 |阅读模式
书目名称Models of Computation for Big Data
编辑Rajendra Akerkar
视频video
概述Focuses on the fundamental principles of algorithm design for big data processing.Covers advanced models of computation relevant for developing memory-efficient algorithms.Advanced-level students and
丛书名称Advanced Information and Knowledge Processing
图书封面Titlebook: Models of Computation for Big Data;  Rajendra Akerkar Book 2018 The Author(s), under exclusive license to Springer Nature Switzerland AG 20
描述.The big data tsunami changes the perspective of industrial and academic research in how they address both foundational questions and practical applications. This calls for a paradigm shift in algorithms and the underlying mathematical techniques. There is a need to understand foundational strengths and address the state of the art challenges in big data that could lead to practical impact. The main goal of this book is to introduce algorithmic techniques for dealing with big data sets. Traditional algorithms work successfully when the input data fits well within memory. In many recent application situations, however, the size of the input data is too large to fit within memory...Models of Computation for Big Data,. covers mathematical models for developing such algorithms, which has its roots in the study of big data that occur often in various applications. Most techniques discussed come from research in the last decade. The book will be structured as a sequence of algorithmic ideas, theoretical underpinning, and practical use of that algorithmic idea. Intended for both graduate students and advanced undergraduate students, there are no formal prerequisites, but the reader should
出版日期Book 2018
关键词Big Data Algorithms; Streaming Algorithms; Sublinear Time Algorithms; Algorithmic Techniquesfor Big Dat
版次1
doihttps://doi.org/10.1007/978-3-319-91851-8
isbn_softcover978-3-319-91850-1
isbn_ebook978-3-319-91851-8Series ISSN 1610-3947 Series E-ISSN 2197-8441
issn_series 1610-3947
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2018
The information of publication is updating

书目名称Models of Computation for Big Data影响因子(影响力)




书目名称Models of Computation for Big Data影响因子(影响力)学科排名




书目名称Models of Computation for Big Data网络公开度




书目名称Models of Computation for Big Data网络公开度学科排名




书目名称Models of Computation for Big Data被引频次




书目名称Models of Computation for Big Data被引频次学科排名




书目名称Models of Computation for Big Data年度引用




书目名称Models of Computation for Big Data年度引用学科排名




书目名称Models of Computation for Big Data读者反馈




书目名称Models of Computation for Big Data读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:00:28 | 显示全部楼层
发表于 2025-3-22 00:26:23 | 显示全部楼层
1610-3947 ing memory-efficient algorithms.Advanced-level students and .The big data tsunami changes the perspective of industrial and academic research in how they address both foundational questions and practical applications. This calls for a paradigm shift in algorithms and the underlying mathematical tech
发表于 2025-3-22 07:25:57 | 显示全部楼层
Book 2018ations. This calls for a paradigm shift in algorithms and the underlying mathematical techniques. There is a need to understand foundational strengths and address the state of the art challenges in big data that could lead to practical impact. The main goal of this book is to introduce algorithmic t
发表于 2025-3-22 10:08:59 | 显示全部楼层
Advanced Information and Knowledge Processinghttp://image.papertrans.cn/m/image/636801.jpg
发表于 2025-3-22 12:59:30 | 显示全部楼层
https://doi.org/10.1007/978-3-319-91851-8Big Data Algorithms; Streaming Algorithms; Sublinear Time Algorithms; Algorithmic Techniquesfor Big Dat
发表于 2025-3-22 18:42:23 | 显示全部楼层
978-3-319-91850-1The Author(s), under exclusive license to Springer Nature Switzerland AG 2018
发表于 2025-3-22 23:16:38 | 显示全部楼层
发表于 2025-3-23 02:45:39 | 显示全部楼层
发表于 2025-3-23 08:07:00 | 显示全部楼层
2512-5494 Schwerpunkten Internationales Management, Unternehmenspolitik und Corporate Governance, Führungskräfte in Unternehmen sowie Entscheidungsträger in Aktionärsvereinigungen und Investmentgesellschaften..978-3-409-12569-7978-3-322-90878-0Series ISSN 2512-5494 Series E-ISSN 2512-6490
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 11:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表